Supporting information file

Time-Dependent Density-Functional Theory for Modelling Solid-State Fluorescence Emission of Organic Multicomponent Crystals

Mihails Arhangelskis,^{*[a,b]} Dominik B. Jochym,^[c] Leonardo Bernasconi,^[c] Tomislav Friščić,^[b] Andrew J. Morris,^{*[d]} and William Jones^[a]

[a] Dr. M Arhangelskis, Dr. W. Jones, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK

[b] Dr. M Arhangelskis, Dr. Tomislav Friščić, Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montreal H3A 0B8, Québec, Canada

[c] Dr. D. B. Jochym, Dr. L. Bernasconi, STFC Rutherford Appleton Laboratory, Didcot OX11 0QX, UK.

[d] Dr. A. J. Morris School of Metallurgy and Materials, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK

Table of Contents

1.	Peri	iodic DFT calculations	S2
1	.1 G	round state geometry optimization	S2
1	2 C	alculation of the solid-state fluorescence spectra	S 3
	1.2.1	Selection of the mean-value k-point	S 3
	1.2.2	Calculation of the oscillator strengths	S9
	1.2.3	TD-DFT geometry optimization	512
	1.2.4	Analysis of spurious states – the role of exact exchange	512
	1.2.5	Modelling of fluorescence line shapes	522
1	3 D	OS calculations	529
1	.4 B	and structure calculations	335
2.	Calc	culation of fluorescence spectra for molecules in the gas phase	548
Ref	erence	es	549

1. Periodic DFT calculations

All plane-wave DFT calculations were performed in CASTEP 7.0.3¹ using the normconserving OPIUM² pseudopotentials. Plane-wave cutoff was set to 750 eV, all other parameters were left at their default settings, unless otherwise stated. TD-DFT excitation energies were calculated using Davidson eigen-solver

1.1 Ground state geometry optimization

Experimentally determined structures³ were optimized in preparation for the subsequent fluorescence calculations. During the calculations both atomic positions and unit cell parameters were optimized. Calculations were performed using the semi-local PBE functional, Monkhorst-Pack⁴ k-point grid spacing was set to 0.03 Å⁻¹. Dispersion energy contribution was calculated using the semi-empirical G06 dispersion correction.⁵ Convergence criteria were set as follows: energy tolerance 10⁻⁵ eV/atom, maximum atomic force 10⁻² eV Å⁻¹, maximum atom displacement 10⁻³ Å and residual stress 0.05 GPa.

For each cocrystal coformer the geometry optimization was performed both for a triclinic and monoclinic unit cell, giving a total of eight geometry optimizations. In each case the experimentally observed structure was found to have a lower lattice energy (Table S1). The optimized crystal structures were used in all the subsequent calculations.

Table S1. Calculated lattice enthalpies of triclinic and monoclinic crystal structures. Energies for structures found experimentally are shown in bold. It is evident that experimental structures (triclinic for A:1 and monoclinic for A:2, A:3 and A:4) are lower in energy.

Cocrystal	absolute e	energy / eV	relative energy / kJ mol ⁻¹		
COCIYSTAI	triclinic (Z=1)	monoclinic (Z=2)	triclinic	monoclinic	
A:1	-6126.866	-12253.338	0.000	18.977	
A:2	-8599.815	-17200.095	22.452	0.000	
A:3	-8714.254	-17429.105	28.861	0.000	
A:4	-9378.664	-18757.641	15.146	0.000	

1.2 Calculation of the solid-state fluorescence spectra

1.2.1 Selection of the mean-value k-point

The implementation of TD-DFT in CASTEP is limited to a calculation with a single k-point, which is generally not sufficient for an adequate Brillouin zone sampling. A possible way to improve Brillouin zone sampling is to perform the calculations on supercells. The computational cost of such calculations, however, makes them impractical for computational screening of luminescent materials.

An alternative to the supercell approach is the calculation on a primitive cell with one specially chosen k-point that provides the most accurate description of the whole Brillouin zone. The position of such a mean-value k-point has been analytically derived for cubic and tetragonal cells.⁶ For the monoclinic and triclinic cells, however, analytical derivation of the mean-value k-point is far more complicated, therefore we adopted a more empirical approach. Our aim was to derive a k-point that reproduces the splitting between occupied and unoccupied bands most accurately. This was achieved by calculating the Singlet-Triplet energy gap for a series of individual k-points and comparing these values to the converged k-point grid (0.03 Å⁻¹ spacing). The energies were calculated with the PBE functional. The k-point most closely matching the energy gap of the converged grid was used as the mean-value k-point. For the triclinic structure of **A:1** cocrystal the mean-value k-point was found at (1/4, -3/8, 1/8), whilst the monoclinic structures **A:2**, **A:3** and **A:4** all had the mean-value k-point at(-1/4, 1/4, 3/8). The summary of mean-value k-points is given in Tables S2-S5.

The advantage of using the mean-value k-point can be clearly seen by comparing the fluorescence spectra of **A:1** cocrystal calculated at the mean-value and gamma k-points (Figure S1). It is evident that the mean-value approach provides a far better agreement with experiment.

Figure S1. Comparison of the experimental and calculated spectra for the triclinic structure of cocrystal **A:1**. The experimental spectrum is shown with a solid line, the spectrum calculated using mean-value k-point is shown with a dashed line, while the dotted line represents calculation using the gamma k-point. The advantage of the mean-value approach is evident from a better agreement with experiment.

Table S2. Determination of the mean-value k-point for the triclinic structure of cocrystal **A:1**. The energies for the singlet, triplet and singlet-triplet gap of the converged k-point grid are -6122.429 eV, -6120.754 eV and 1.674 eV, respectively. The $\binom{1}{4}$, $-\frac{3}{8}$, $\frac{1}{8}$ k-point, shown in red, gives the best agreement with these three quantities (Table continued overleaf).

	k-point		E(singlet) / eV	E (triplet) / eV	gap / eV	$\Delta E(singlet) / eV$	ΔE (triplet) / eV	∆gap / eV
0.375	0.375	0.375	-6122.006318	-6120.282052	1.724	0.422	0.472	0.050
0.375	0.375	0.125	-6122.046837	-6120.171698	1.875	0.382	0.583	0.201
0.375	0.375	-0.125	-6121.98892	-6120.292181	1.697	0.440	0.462	0.022
0.375	0.375	-0.375	-6121.945992	-6120.341026	1.605	0.483	0.413	0.069
0.375	0.125	0.375	-6121.940838	-6120.163303	1.778	0.488	0.591	0.103
0.375	0.125	0.125	-6121.97528	-6120.071291	1.904	0.453	0.683	0.230
0.375	0.125	-0.125	-6121.925215	-6120.163594	1.762	0.504	0.591	0.087
0.375	0.125	-0.375	-6121.888969	-6120.210859	1.678	0.540	0.544	0.004
0.375	-0.125	0.375	-6121.891634	-6120.144934	1.747	0.537	0.609	0.072

0.375	-0.125	0.125	-6121.933781	-6120.032155	1.902	0.495	0.722	0.227
0.375	-0.125	-0.125	-6121.891197	-6120.113007	1.778	0.538	0.641	0.104
0.375	-0.125	-0.375	-6121.846662	-6120.180143	1.667	0.582	0.574	0.008
0.375	-0.375	0.375	-6121.958404	-6120.261684	1.697	0.470	0.493	0.022
0.375	-0.375	0.125	-6122.00695	-6120.134594	1.872	0.422	0.620	0.198
0.375	-0.375	-0.125	-6121.955386	-6120.245464	1.710	0.473	0.509	0.036
0.375	-0.375	-0.375	-6121.904241	-6120.311249	1.593	0.524	0.443	0.081
0.125	0.375	0.375	-6122.979611	-6121.242383	1.737	-0.551	-0.488	0.063
0.125	0.375	0.125	-6122.931185	-6121.34662	1.585	-0.502	-0.592	0.090
0.125	0.375	-0.125	-6122.886153	-6121.392905	1.493	-0.457	-0.638	0.181
0.125	0.375	-0.375	-6122.938423	-6121.344737	1.594	-0.510	-0.590	0.081
0.125	0.125	0.375	-6122.969357	-6121.244236	1.725	-0.541	-0.490	0.051
0.125	0.125	0.125	-6122.925071	-6121.329941	1.595	-0.496	-0.576	0.079
0.125	0.125	-0.125	-6122.877531	-6121.38282	1.495	-0.449	-0.628	0.180
0.125	0.125	-0.375	-6122.923935	-6121.328774	1.595	-0.495	-0.574	0.079
0.125	-0.125	0.375	-6122.932761	-6121.211798	1.721	-0.504	-0.457	0.047
0.125	-0.125	0.125	-6122.88753	-6121.295426	1.592	-0.459	-0.541	0.082
0.125	-0.125	-0.125	-6122.834415	-6121.349986	1.484	-0.406	-0.596	0.190
0.125	-0.125	-0.375	-6122.882835	-6121.300661	1.582	-0.454	-0.546	0.092
0.125	-0.375	0.375	-6122.943117	-6121.210162	1.733	-0.514	-0.456	0.059
0.125	-0.375	0.125	-6122.892715	-6121.311922	1.581	-0.464	-0.558	0.094
0.125	-0.375	-0.125	-6122.84136	-6121.358585	1.483	-0.413	-0.604	0.192
0.125	-0.375	-0.375	-6122.89583	-6121.314645	1.581	-0.467	-0.560	0.093
0.25	0.375	0.375	-6122.526406	-6120.761538	1.765	-0.098	-0.007	0.091
0.25	0.375	0.125	-6122.516234	-6120.786003	1.730	-0.087	-0.032	0.056
0.25	0.375	-0.125	-6122.446597	-6120.875649	1.571	-0.018	-0.121	0.103
0.25	0.375	-0.375	-6122.456751	-6120.883467	1.573	-0.028	-0.129	0.101
0.25	0.125	0.375	-6122.483413	-6120.707047	1.776	-0.055	0.047	0.102
0.25	0.125	0.125	-6122.478241	-6120.720537	1.758	-0.050	0.034	0.083
0.25	0.125	-0.125	-6122.412	-6120.801428	1.611	0.017	-0.047	0.064
0.25	0.125	-0.375	-6122.417552	-6120.812612	1.605	0.011	-0.058	0.069
0.25	-0.125	0.375	-6122.426385	-6120.672267	1.754	0.002	0.082	0.080
0.25	-0.125	0.125	-6122.425057	-6120.659827	1.765	0.004	0.095	0.091
0.25	-0.125	-0.125	-6122.355328	-6120.753012	1.602	0.073	0.001	0.072
0.25	-0.125	-0.375	-6122.356637	-6120.771805	1.585	0.072	-0.017	0.089
0.25	-0.375	0.375	-6122.468564	-6120.726487	1.742	-0.040	0.028	0.068
0.25	-0.375	0.125	-6122.462493	-6120.725551	1.737	-0.034	0.029	0.063
0.25	-0.375	-0.125	-6122.388481	-6120.827677	1.561	0.040	-0.073	0.114
0.25	-0.375	-0.375	-6122.395458	-6120.840612	1.555	0.033	-0.086	0.119

Table S3. Determination of the mean-value k-point for the monoclinic structure of cocrystal A:2. The energies for the singlet, triplet and singlet-triplet gap of the converged k-point grid are -17191.770 eV, -17190.033 eV and 1.738 eV, respectively. The (-1/4, 1/4, 3/8) k-point, shown in red, gives the best agreement with these three quantities.

				1				1
	k-point		E(singlet) / eV	E (triplet) / eV	gap / eV	ΔE(singlet) / eV	ΔE (triplet) / eV	Δgap / eV
-0.375	-0.125	0.375	-17190.94507	-17189.182	1.763	0.825	0.851	0.026
-0.375	0.125	0.125	-17190.94519	-17189.185	1.760	0.825	0.848	0.023
-0.125	-0.375	-0.375	-17192.57765	-17190.822	1.756	-0.807	-0.789	0.018
-0.125	0.375	0.375	-17192.57704	-17190.820	1.757	-0.807	-0.788	0.019
0.125	-0.375	-0.125	-17192.57676	-17190.820	1.757	-0.806	-0.787	0.019
0.125	-0.375	0.125	-17192.57772	-17190.822	1.756	-0.807	-0.789	0.018
0.125	-0.125	-0.375	-17192.15111	-17190.46902	1.682	-0.381	-0.436	0.056
0.125	-0.125	-0.125	-17192.15179	-17190.4672	1.685	-0.381	-0.434	0.053
0.125	-0.125	0.125	-17192.14964	-17190.47251	1.677	-0.379	-0.440	0.061
0.125	-0.125	0.375	-17192.14991	-17190.47526	1.675	-0.379	-0.442	0.063
0.375	-0.375	0.125	-17191.40143	-17189.56462	1.837	0.369	0.468	0.099
0.375	-0.375	0.375	-17191.40219	-17189.56547	1.837	0.368	0.467	0.099
0.375	0.125	0.125	-17190.94613	-17189.1864	1.760	0.824	0.846	0.022
0.375	0.125	0.375	-17190.94545	-17189.18266	1.763	0.825	0.850	0.025
0.375	0.375	-0.375	-17191.4023	-17189.5658	1.837	0.368	0.467	0.099
0.375	0.375	-0.125	-17191.4014	-17189.56482	1.837	0.369	0.468	0.099
0.25	-0.375	-0.375	-17192.00107	-17190.20669	1.794	-0.231	-0.174	0.057
0.25	0.375	0.375	-17192.00174	-17190.20727	1.794	-0.231	-0.175	0.057
0.25	-0.375	-0.125	-17192.00053	-17190.20574	1.795	-0.230	-0.173	0.057
0.25	-0.375	0.125	-17192.00175	-17190.20687	1.795	-0.231	-0.174	0.057
0.25	-0.125	-0.375	-17191.55837	-17189.84304	1.715	0.212	0.190	0.022
0.25	-0.125	-0.125	-17191.55895	-17189.83968	1.719	0.211	0.193	0.018
0.25	-0.125	0.125	-17191.55935	-17189.83623	1.723	0.211	0.197	0.015
0.25	-0.125	0.375	-17191.55867	-17189.83949	1.719	0.212	0.193	0.018
0.25	0.25	0.125	-17191.77941	-17190.02099	1.758	-0.009	0.012	0.021
-0.25	0.25	0.125	-17191.78048	-17190.02414	1.756	-0.010	0.009	0.019
0.25	0.25	0.375	-17191.77964	-17190.02334	1.756	-0.009	0.009	0.019
-0.25	0.25	0.375	-17191.78105	-17190.02684	1.754	-0.011	0.006	0.017

Table S4. Determination of the mean-value k-point for the monoclinic structure of cocrystal A:3. The energies for the singlet, triplet and singlet-triplet gap of the converged k-point grid are -17421.031 eV, -17419.245 eV and 1.787 eV, respectively. The (-1/4, 1/4, 3/8) k-point, shown in red, gives the best agreement with these three quantities.

	k-point		E(singlet) / eV	E (triplet) / eV	gap / eV	ΔE(singlet) / eV	ΔE (triplet) / eV	∆gap∕eV
-0.375	-0.125	0.375	-17420.27153	-17418.471	1.801	0.760	0.774	0.014
-0.375	0.125	0.125	-17420.27129	-17418.474	1.797	0.760	0.770	0.010
-0.125	-0.375	-0.375	-17421.74958	-17419.950	1.800	-0.718	-0.705	0.013
-0.125	0.375	0.375	-17421.74986	-17419.949	1.801	-0.718	-0.704	0.014
0.125	-0.375	-0.125	-17421.75057	-17419.949	1.802	-0.719	-0.704	0.015
0.125	-0.375	0.125	-17421.75103	-17419.951	1.800	-0.720	-0.706	0.013
0.125	-0.125	-0.375	-17421.30412	-17419.568	1.736	-0.273	-0.323	0.050
0.125	-0.125	-0.125	-17421.30376	-17419.565	1.739	-0.272	-0.320	0.048
0.125	-0.125	0.125	-17421.30302	-17419.576	1.727	-0.272	-0.331	0.060
0.125	-0.125	0.375	-17421.30361	-17419.579	1.725	-0.272	-0.334	0.062
0.375	-0.375	0.125	-17420.79559	-17418.928	1.867	0.236	0.316	0.080
0.375	-0.375	0.375	-17420.7961	-17418.929	1.868	0.235	0.316	0.081
0.375	0.125	0.125	-17420.27109	-17418.473	1.798	0.760	0.772	0.011
0.375	0.125	0.375	-17420.27169	-17418.470	1.802	0.760	0.775	0.015
0.375	0.375	-0.375	-17420.7965	-17418.929	1.867	0.235	0.315	0.080
0.375	0.375	-0.125	-17420.79594	-17418.929	1.867	0.235	0.315	0.080
0.25	-0.375	-0.375	-17421.28342	-17419.45226	1.831	-0.252	-0.208	0.044
0.25	0.375	0.375	-17421.28279	-17419.45117	1.832	-0.251	-0.207	0.045
0.25	-0.375	-0.125	-17421.28263	-17419.45047	1.832	-0.251	-0.206	0.045
0.25	-0.375	0.125	-17421.2834	-17419.45078	1.833	-0.252	-0.206	0.046
0.25	-0.125	-0.375	-17420.79741	-17419.03904	1.758	0.234	0.206	0.028
0.25	-0.125	-0.125	-17420.79741	-17419.03195	1.765	0.234	0.213	0.021
0.25	-0.125	0.125	-17420.79794	-17419.02842	1.770	0.233	0.216	0.017
0.25	-0.125	0.375	-17420.79773	-17419.03533	1.762	0.234	0.209	0.024
0.25	0.25	0.125	-17421.04086	-17419.23998	1.801	-0.009	0.005	0.014
-0.25	0.25	0.125	-17421.04139	-17419.2429	1.798	-0.010	0.002	0.012
0.25	0.25	0.375	-17421.04015	-17419.24329	1.797	-0.009	0.001	0.010
-0.25	0.25	0.375	-17421.04034	-17419.24586	1.794	-0.009	-0.001	0.008

Table S5. Determination of the mean-value k-point for the monoclinic structure of cocrystal A:4. The energies for the singlet, triplet and singlet-triplet gap of the converged k-point grid are -18749.496 eV, -18747.734 eV and 1.762 eV, respectively. The (-1/4, 1/4, 3/8) k-point, shown in red, gives the best agreement with these three quantities.

			1	1	1	1	1	
	k-point		E(singlet) / eV	E (triplet) / eV	gap / eV	∆E(singlet) / eV	ΔE (triplet) / eV	∆gap / eV
-0.375	-0.125	0.375	-18748.82185	-18747.04882	1.773	0.674	0.685	0.011
-0.375	0.125	0.125	-18748.82148	-18747.05117	1.770	0.674	0.683	0.009
-0.125	-0.375	-0.375	-18750.12162	-18748.34534	1.776	-0.626	-0.611	0.015
-0.125	0.375	0.375	-18750.12085	-18748.34288	1.778	-0.625	-0.609	0.016
0.125	-0.375	-0.125	-18750.12021	-18748.34146	1.779	-0.624	-0.607	0.017
0.125	-0.375	0.125	-18750.12101	-18748.34395	1.777	-0.625	-0.610	0.015
0.125	-0.125	-0.375	-18749.65664	-18747.93424	1.722	-0.161	-0.200	0.039
0.125	-0.125	-0.125	-18749.65727	-18747.93238	1.725	-0.161	-0.198	0.037
0.125	-0.125	0.125	-18749.65594	-18747.94139	1.715	-0.160	-0.207	0.047
0.125	-0.125	0.375	-18749.65543	-18747.94333	1.712	-0.160	-0.209	0.050
0.375	-0.375	0.125	-18749.37606	-18747.54821	1.828	0.120	0.186	0.066
0.375	-0.375	0.375	-18749.37663	-18747.54808	1.829	0.119	0.186	0.067
0.375	0.125	0.125	-18748.82228	-18747.05167	1.771	0.674	0.683	0.009
0.375	0.125	0.375	-18748.8223	-18747.04897	1.773	0.674	0.685	0.012
0.375	0.375	-0.375	-18749.37746	-18747.54876	1.829	0.118	0.185	0.067
0.375	0.375	-0.125	-18749.37667	-18747.54867	1.828	0.119	0.185	0.066
0.25	-0.375	-0.375	-18749.76455	-18747.96464	1.800	-0.269	-0.230	0.038
0.25	0.375	0.375	-18749.7645	-18747.96357	1.801	-0.269	-0.229	0.039
0.25	-0.375	-0.125	-18749.76392	-18747.96309	1.801	-0.268	-0.229	0.039
0.25	-0.375	0.125	-18749.7641	-18747.96224	1.802	-0.268	-0.228	0.040
0.25	-0.125	-0.375	-18749.25497	-18747.51654	1.738	0.241	0.218	0.023
0.25	-0.125	-0.125	-18749.25562	-18747.51131	1.744	0.240	0.223	0.017
0.25	-0.125	0.125	-18749.25511	-18747.50715	1.748	0.241	0.227	0.014
0.25	-0.125	0.375	-18749.25477	-18747.51273	1.742	0.241	0.221	0.020
0.25	0.25	0.125	-18749.51004	-18747.73495	1.775	-0.014	-0.001	0.013
-0.25	0.25	0.125	-18749.51092	-18747.73827	1.773	-0.015	-0.004	0.011
0.25	0.25	0.375	-18749.50945	-18747.73769	1.772	-0.014	-0.004	0.010
-0.25	0.25	0.375	-18749.50986	-18747.74053	1.769	-0.014	-0.006	0.008

1.2.2 Calculation of the oscillator strengths

Oscillator strengths were calculated for a few lowest excited states using the PBE functional. States having the highest oscillator strengths contribute most to light absorption and, consequently fluorescence emission.

The calculated oscillator strengths for all crystal structures are given in Tables S6-S11. The dominant excited state for the triclinic cells is S₁, while the monoclinic cells showed the highest oscillator strengths for the states S₁ and S₃. The intermediate state S₂, however, has been classified as a spurious state. Spurious states are a known artefact of TD-DFT, they do not correspond to physical electronic excitations.⁷ Consequently, the calculated state S₃ corresponds to the experimentally observed state S₂. In order to be certain about the assignment of TD-DFT excited states, additional tests were performed, as described in section 2.2.4.

Table S6. Calculated oscillator strengths for the experimental triclinic structure of cocrystal A:1. Excited state S_1 having the largest oscillator strength was used to model the fluorescence spectrum.

Excited state	Excitation energy / eV	Oscillator strength
S ₁	2.273	3.7938
S ₂	2.622	0.4691
S ₃	2.664	0.1401
S_4	3.136	0.0180
S ₅	3.235	0.1015

Table S7. Calculated oscillator strengths for the hypothetical monoclinic structure of cocrystal A:1. Excited state S_1 and S_3 were used to model the fluorescence spectrum. Note an extremely small oscillator strength for the spurious state S_2 .

Excited state	Excitation energy / eV	Oscillator strength
S ₁	1.818	0.7113
S ₂	1.836	0.0006
S ₃	2.155	5.4609
S_4	2.265	0.0098
S ₅	2.302	0.5741

Table S8. Calculated oscillator strengths for the hypothetical triclinic structure of cocrystal A:2. Excited state S_1 having the largest oscillator strength was used to model the fluorescence spectrum.

Excited state	Excitation energy / eV	Oscillator strength
S ₁	2.279	5.3303
S ₂	2.619	0.0085
S ₃	2.689	0.0146
S ₄	2.870	0.0178
S ₅	3.131	0.0325
		1

Table S9. Calculated oscillator strengths for the experimental monoclinic structure of cocrystal A:2. Excited state S_1 and S_3 were used to model the fluorescence spectrum. Note an extremely small oscillator strength for the spurious state S_2 .

Excited state	Excitation energy / eV	Oscillator strength
S ₁	1.841	0.3883
S ₂	1.852	0.0332
S ₃	2.203	9.1854
S_4	2.457	0.0674
S ₅	2.467	0.0016

Table S10. Calculated oscillator strengths for the hypothetical triclinic structure of cocrystal A:3. Excited state S_1 having the largest oscillator strength was used to model the fluorescence spectrum.

Excited state	Excitation energy / eV	Oscillator strength
S ₁	2.325	5.1400
S ₂	2.652	0.0362
S ₃	2.927	0.0048
S ₄	3.003	0.0155
S_5	3.141	0.0268

Table S11. Calculated oscillator strengths for the experimental monoclinic structure of cocrystal A:3. Excited state S_1 and S_3 were used to model the fluorescence spectrum. Note an extremely small oscillator strength for the spurious state S_2 .

Excited state	Excitation energy / eV	Oscillator strength
S ₁	1.887	0.4843
S ₂	1.900	0.0111
S ₃	2.251	9.3012
S ₄	2.515	0.0063
S ₅	2.522	0.0173
		1

Table S12. Calculated oscillator strengths for the hypothetical triclinic structure of cocrystal A:4. Excited state S_1 having the largest oscillator strength was used to model the fluorescence spectrum.

Excited state	Excitation energy / eV	Oscillator strength
S ₁	2.262	4.857
S ₂	2.444	0.0105
S ₃	2.645	0.3768
S ₄	2.978	0.0106
S ₅	3.192	0.0192
	l	I

Table S13. Calculated oscillator strengths for the experimental monoclinic structure of cocrystal **A:4**. Excited state S_1 and S_3 were used to model the fluorescence spectrum. Note an extremely small oscillator strength for the spurious state S_2 .

Excited state	Excitation energy / eV	Oscillator strength
S ₁	1.859	0.4023
S ₂	1.868	0.0005
S ₃	2.211	9.4627
S_4	2.387	0.0167
S ₅	2.395	0.0264

1.2.3 TD-DFT geometry optimization

TD-DFT geometry optimization was performed for the states selected based on their oscillator strengths (S_1 for the triclinic structures, S_1 and S_3 for the monoclinic structures).

Optimization of the excited states was performed using the PBE functional with the mean-value k-point. The following convergence criteria were used: energy tolerance 10^{-5} eV/atom, maximum atomic force $3x10^{-2}$ eV Å⁻¹, maximum atom displacement 10^{-3} Å. The cell parameters were kept fixed at the values derived from the ground state geometry optimization.

1.2.4 Analysis of spurious states – the role of exact exchange

In order to model the fluorescence spectra correctly it is necessary to rule out any unphysical electronic excitations. It has been found that increasing the contribution of exact exchange in DFT functionals improves the accuracy of the excitation energies and provide a better description for Charge Transfer (CT) states.^{8,9} Nonetheless, even when hybrid functionals are used, there is a risk of finding CT states among the low-lying excited states. TD-DFT can be compared with the time-dependent Hartree-Fock method (TD-HF), where the latter improves the description of CT excitations. The ordering of the excitations remains the same between the two methods, hence we conclude that CT excitations are not dominant (which is more likely than CT excitations are present and incorrectly described in TD-DFT to the same degree in all crystals studied).We find that the excitation energies determined by TD-HF, however, are usually overestimated.

In the present work single-point TD-DFT calculations were performed using a hybrid B3LYP functional to improve the accuracy over the original PBE calculations. In addition, singlepoint TD-DFT calculations were performed in order to ensure that the excited states under consideration are the true electronic excitations and not the artefact of TD-DFT. The comparison of PBE, B3LYP and HF calculations is given in Tables S14-S21.

Perhaps the reader may ask why could hybrid functionals not be used throughout the calculation process. There are two reasons for this:

S12

- Current implementation of TD-DFT in CASTEP allows to perform hybrid calculations only at the gamma k-point. We have seen, however, that using the mean-value kpoint gives a great improvement in the accuracy of fluorescence calculations.
- 2) Calculation of HF exchange is extremely expensive in the plane-wave formalism. By performing the geometry optimization using the semi-local PBE functionals and correcting the final excitation energies with the hybrid calculations we have saved 1000s of CPU hours of computer time.

To conclude, we believe that the decision to use PBE functional for geometry optimization followed by B3LYP single-point calculations has given us the best balance of accuracy and performance at present. Depending on the development of periodic TD-DFT and the available computer power, full hybrid calculations may become practical in the future.

Table S14. TD-DFT and TD-HF band transitions for the experimentally found triclinic structure of **A:1** cocrystal. Excited states S1-S5 are shown, transitions contributing less than 10% to the electronic excitation were omitted. B3LYP functional was used to calculate the emission spectrum. PBEO was used for comparison. Evidently, the results of both hybrid functionals (B3LYP and PBEO) are very similar.

Excited state	Mean-value k-point	Gamma k-point			
	PBE	PBE	B3LYP	PBEO	HF
c	2.273 eV	1.980 eV	2.204 eV	2.284 eV	2.984 eV
5 ₁	82>83 0.9126	82>83 0.9633	82>83 0.9817	82>83 0.9822	82>83 0.8960
	2.622 eV	2.5474 eV	2.992 eV	3.121 eV	4.391 eV
S ₂	S ₂ 81>83 0.5433 80>83 0.4166	82>84 0.7216	82>84 0.7999	82>84 0.8128	82>84 0.6961
		80>83 0.2716	80>83 0.1903	80>83 0.1756	80>83 0.1513
	2.664 eV	2 5/8 eV	3 162 eV	3 280 eV	5.126 eV
S ₃	82>84 0.4976	2.548 eV 81>83 0.9965	91 \22 0 0046	81>83 0.9929	79>83 0.4127
	80>83 0.3080		01205 0.9940		82>87 0.1518
					5.252 eV
	3.136 eV	3.131 eV	3.684 eV	3.815 eV	82>85 0.3490
S_4	79>83 0.7855	79>83 0.7545	79>83 0.6579	79>83 0.6199	78>84 0.1239
	78>83 0.1713	78>83 0.1735	82>86 0.2971	82>86 0.3115	76>83 0.1057
					80>83 0.1051
	3.235 eV	3 219 eV			5.420 eV
ç	81>84 0.2716	92 \96 0 7224	3.749 eV	3.882 eV	78>83 0.2649
၁ 5	82>85 0.2035	70 > 02 200 0.7324	82>85 0.8767	82>85 0.8167	76>84 0.1480
	82>84 0.1282	/8>83 0.236/			77>83 0.1296

Table S15. TD-DFT and TD-HF band transitions for the hypothetical monoclinic structure of **A:1** cocrystal. Excited states S1-S5 are shown, transitions contributing less than 10% to the electronic excitation were omitted, except for TD-HF S_5 state where none of the transitions contributed 10%.

Excited state	Mean-value k-point	Gamma k-point			
	PBE	PBE	B3LYP	PBEO	HF
	1.818 eV	1.672 eV	2.477 eV	2.600 eV	3.424 eV
S ₁	164>165 0.7161	164>165 0.7480	164>165 0.6637	164>165 0.6040	164>165 0.3723
	163>166 0.2714	163>166 0.2498	163>166 0.2758	163>166 0.3221	163>166 0.3396
S	1.836 eV	1.678 eV	2.908 eV	3.034 eV	3.921 eV
52	163>165 0.4980	164>166 0.5054	162>165 0.2789	162>165 0.2449	163>165 0.3307

	164>166 0.4972	163>165 0.4943	164>166 0.2420	164>166 0.2372	164>166 0.3191
			161>166 0.2309	163>165 0.2163	
			163>165 0.1755	161>166 0.2100	
					4.694 eV
	2.155 eV	2.041 eV	2.986 eV	3.229 eV	159>165 0.2134
S ₃	163>166 0.6120	163>166 0.6566	163>165 0.5308	161>165 0.4959	160>166 0.1896
	164>165 0.2187	164>165 0.2018	164>166 0.3893	162>166 0.4281	163>167 0.1838
					164>168 0.1523
		2.186 eV			4.925 eV
	2.265 eV	162>165 0.6369	3.012 eV	3.296 eV	160>165 0.2087
S ₄	162>165 0.5280	161>166 0.1202	163>166 0.6558	163>165 0.5247	164>167 0.1811
	161>165 0.2890	164>166 0.1175	164>165 0.2677	164>166 0.3385	159>166 0.1628
		163>165 0.1134			163>168 0.1238
	2 201 oV				5.362 eV
	2.301 eV	2.291 eV	3.087 eV	3.321 eV	158>165 0.0796
S ₅	101>105 0.5799	161>165 0.7314	161>165 0.5180	163>166 0.5682	157>166 0.0795
	102>105 0.3012	162>166 0.2431	162>166 0.4251	164>165 0.3011	158>166 0.0712
	162>166 0.2300				157>165 0.0709

Excited state	Mean-value k-point	Gamma k-point			
	PBE	PBE	B3LYP	PBEO	HF
ç	2.272 eV	2.222 eV	2.457 eV	2.540 eV	3.230 eV
3 1	94>95 0.9542	94>95 0.9612	94>95 0.9805	94>95 0.9808	94>95 0.8785
	2.619 eV	2 650 eV	3.126 eV	3.253 eV	4.479 eV
S ₂	94>96 0.5451		94>96 0.7631	94>96 0.7803	94>96 0.6873
	93>95 0.4514	93295 0.9907	92>95 0.2277	92>95 0.2089	93>95 0.1638
S ₃	2.689 eV 92>95 0.9913	2.678 eV 94>96 0.6820 91>95 0.3118	3.397 eV 93>95 0.9945	3.502 eV 93>95 0.9937	5.298 eV 91>95 0.4055
S ₄	2.870 eV	2.800 eV	3.581 eV	3.767 eV	5.380 eV 94>99 0.1909 87>95 0.1611
	51 755 0.5504	32 733 0.3374	54 757 0.5557	54 757 0.5510	94>98 0.1454
S ₅	2.870 eV 94>97 0.9659	2.870 eV 94>97 0.9891	3.673 eV 94>98 0.9782	3.673 eV 91>95 0.9891	5.497 eV 89>95 0.2276 87>96 0.1962 94>104 0.1213 90>95 0.1092

Table S16. TD-DFT and TD-HF band transitions for the hypothetical triclinic structure of **A:2** cocrystal. Excited states S1-S4 are shown, transitions contributing less than 10% to the electronic excitation were omitted.

Excited	Mean-value k-		Gamma	k-noint	
state	point		Gamma	k-point	
State	PBE	PBE	B3LYP	PBEO	HF
	1.841 eV	1.728 eV	2.512 eV	2.638 eV	3.433 eV
S_1	188>189 0.6385	188>189 0.7305	188>189 0.7295	188>189 0.6524	188>189 0.3841
	187>190 0.3024	187>190 0.2681	187>190 0.2246	187>190 0.2883	187>190 0.3366
	1.852 eV	1.750 eV	2.895 eV	3.181 eV	3.914 eV
S ₂	188>190 0.4783	188>190 0.5080	188>190 0.4928	188>190 0.5377	187>189 0.3323
	187>189 0.4606	187>189 0.4919	187>189 0.4389	187>189 0.3518	188>190 0.3285
					4.631 eV
S ₃	2.203 eV	2.128 eV	2.930 eV	3.208 eV	186>190 0.2077
	187>190 0.6326	187>190 0.7002	187>190 0.7200	187>190 0.6296	185>189 0.1965
	188>189 0.3104	188>189 0.2478	188>189 0.2152	188>189 0.2662	188>192 0.1778
					187>191 0.1711
	2 457 eV				4.913 eV
	198>101 0 5895	2.451 eV	3.126 eV	3.126 eV	186>189 0.2063
S_4	196 \190 0 2624	188>192 0.7162	187>189 0.4184	187>189 0.4883	188>191 0.1861
	107 \107 0.2024	187>191 0.2442	188>190 0.3599	188>190 0.2930	185>190 0.1639
	18/>192 0.1111				187>192 0.1271
			3.404 eV		
	2.467 eV	2.453 eV	188>192 0.4648	3.497 eV	5.347 eV
S_5	188>192 0.6509	186>189 0.5543	187>191 0.2010	184>189 0.5086	182>190 0.1537
	187>191 0.2103	188>191 0.1233	185>189 0.1374	185>190 0.4188	181>189 0.1527
			186>190 0.1293		

Table S17. TD-DFT and TD-HF band transitions for the experimentally found monoclinic structure of A:2 cocrystal. Excited states S1-S4 are shown, transitions contributing less than 10% to the electronic excitation were omitted.

Table S18. TD-DFT and TD-HF band transitions for the hypothetical triclinic structure of **A:3** cocrystal. Excited states S1-S4 are shown, transitions contributing less than 10% to the electronic excitation were omitted.

Excited state	Mean-value k-point		Gamm	a k-point	
	PBE	PBE	B3LYP	PBEO	HF
S ₁	2.325 eV 94>95 0.9533	2.217 eV 94>95 0.9623	2.453 eV 94>95 0.9812	2.538 eV 94>95 0.9817	3.242 eV 94>95 0.8813 93>96 0.0595
	2.652 eV	2.702 eV	3.162 eV	3.293 eV	4-562 eV
S ₂	94>96 0.5382	94>96 0.6658	94>96 0.7422	94>96 0.7567	94>96 0.6735
	93>95 0.4578	91>95 0.3290	93>95 0.2500	93>95 0.2342	93>95 0.1717
S ₃	2.927 eV 92>95 0.9978	2.831 eV 93>95 0.9975	3.577 eV 94>97 0.9969	3.776 eV 94>97 0.9926	5.330 eV 91>95 0.3891 94>102 0.1286 94>101 0.1085 92>95 0.1051
S ₄	3.003 eV 91>95 0.9936	2.901 eV 92>95 0.9974	3.667 eV 92>95 0.9933	3.790 eV 92>95 0.9953	5.408 eV 94>99 0.2243 88>95 0.1896 90>96 0.1194
S ₅	3.141 eV 94>97 0.9870	3.041 eV 94>97 0.9974	3.688 eV 94>98 0.9768	3.876 eV 94>98 0.9574	5.525 eV 90>95 0.2758 88>96 0.2052 94>103 0.1315

Table S19. TD-DFT and TD-HF band transitions for the experimentally found monoclinic structure of A:3 cocrystal. Excited states S1-S4 are shown, transitions contributing less than 10% to the electronic excitation were omitted, except for TD-HF S₅ state where none of the transitions contributed 10%.

Excited state	Mean-value k-point		Gamma	k-point	
	PBE	PBE	B3LYP	PBEO	HF
	1.887 eV	1.788 eV	2.565 eV	2.697 eV	3.505 eV
S ₁	188>189 0.6685	188>189 0.7560	188>189 0.7713	188>189 0.6894	188>189 0.3907
Excited state	187>190 0.3082	187>190 0.2423	187>190 0.1841	187>190 0.2526	187>190 0.3284
	1.900 eV	1.817 eV	2.931 eV	3.208 eV	4.018 eV
S ₂	188>190 0.5009	188>190 0.5148	188>190 0.5360	188>190 0.5766	188>190 0.3343
	187>189 0.4790	187>189 0.4850	187>189 0.3928	187>189 0.3106	187>189 0.3251
					4.688 eV
	2.251 eV	2.200 eV	2.982 eV	3.249 eV	186>190 0.2190
S ₃	187>190 0.6548	187>190 0.7346	187>190 0.7587	187>190 0.6621	188>191 0.1950
	188>189 0.3026	188>189 0.2269	188>189 0.1744	188>189 0.2306	185>189 0.1778
					187>192 0.1587
			3.429 eV		5.002 eV
	2.515 eV	2.501 eV	188>191 0.4822	3.367 eV	186>189 0.2026
S ₄	188>191 0.6758	188>191 0.7837	187>192 0.1775	187>189 0.5491	188>192 0.1942
	187>192 0.2274	187>192 0.1560	186>190 0.1455	188>190 0.2850	185>190 0.1576
			185>189 0.1382		187>191 0.1244
			3.449 eV	3.655 eV	5.420 eV
	2.522 eV	2.525 eV	188>192 0.3407	188>191 0.1904	184>189 0.0823
S ₅	188>192 0.6648	188>192 0.6949	187>191 0.2995	188>192 0.1811	183>190 0.0724
	187>191 0.2884	187>191 0.2258	186>189 0.1656	187>191 0.1516	188>205 0.0608
			185>190 0.1358	186>189 0.1011	180>189 0.0573

Table S20. TD-DFT and TD-HF band transitions for the hypothetical triclinic structure of **A:4** cocrystal. Excited states S1-S4 are shown, transitions contributing less than 10% to the electronic excitation were omitted.

Excited state	Mean-value k-point		Gamma k-point			
	PBE	PBE	B3LYP	PBEO	HF	
					3.208 eV	
S.	2.262 eV	2.169 eV	2.408 eV	2.493 eV	99>100 0.8767	
51	99>100 0.9400	99>100 0.9538	99>100 0.9802	99>100 0.9811	98>101 0.0307	
					98>102 0.0268	
		2 433 eV		3 088 eV	4.577 eV	
S.	2.444 eV	99>101 0 8899	2.867 eV	99>101 0 8397	99>101 0.4025	
52	99>101 0.9824	99>102 0 1052	99>101 0.9623	99>102 0 1506	99>102 0.2472	
		55-7102 0.1052		55-7102 0.1500	98>100 0.1909	
	2.645 eV	2.701 eV	3.155 eV	3.287 eV	5.195 eV	
S ₃	99>102 0.5466	99>102 0.5871	99>102 0.7038	99>102 0.6486	99>102 0.4520	
	98>100 0.4271	97>100 0.3284	98>100 0.2713	98>100 0.2530	99>101 0.3902	
S.	2.978 eV	2.821 eV	3.733 eV	3.827 eV	5.313 eV	
54	97>100 0.9824	98>100 0.9686	97>100 0.9615	97>100 0.9648	97>100 0.4593	
	3 193 eV	3.086 eV	3.905 eV	4 039 eV	5.405 eV	
S ₅	98>101 0 9675	96>100 0 9290	96>100 0.4427	96>100 0 6362	99>103 0.1809	
	50 / 101 0.5075	50 7100 0.5250	99>103 0.3652	50 7100 0.0502	98>100 0.1280	

Table S21. TD-DFT and TD-HF band transitions for the experimentally found monoclinic structure of **A:4** cocrystal. Excited states S1-S4 are shown, transitions contributing less than 10% to the electronic excitation were omitted.

Excited state	Mean-value k-point		Gamma	k-point	
	PBE	PBE	B3LYP	PBEO	HF
	1.859 eV	1.776 eV	2.567 eV	2.702 eV	3.530 eV
S ₁	198>199 0.6586	198>199 0.7493	198>199 0.7504	198>199 0.6720	198>199 0.3818
	197>200 0.3367	197>200 0.2489	197>200 0.1994	197>200 0.2639	197>200 0.3229
				3.222 eV	
	1.868 eV	1.803 eV	2.949 eV	197>199 0.2977	4.049 eV
S ₂	197>199 0.5007	198>200 0.5017	198>200 0.4519	198>203 0.2346	198>200 0.3213
	198>200 0.4982	197>199 0.4980	197>199 0.4267	198>200 0.1973	197>199 0.3208
				197>204 0.1780	
					4.707 eV
	2.211 eV	2.178 eV	2.994 eV	3.242 eV	196>200 0.2107
S ₃	197>200 0.6312	197>200 0.7273	197>200 0.6983	198>204 0.4230	195>199 0.1840
	198>199 0.3153	198>199 0.2332	198>199 0.1671	197>203 0.3917	198>202 0.1835
					197>201 0.1631
		2.4658 eV	3.018 eV	3 253 eV	5.010 eV
	2.387 eV	198>202 0 6970	198>203 0.3561	198>200 0 3272	196>199 0.2017
S_4	198>201 0.7498	198>204 0 1597	197>204 0.2352	198>203 0 2524	198>201 0.1900
	197>201 0.1565	197>201 0 1114	197>201 0.1839	197>204 0 2377	195>200 0.1514
		157 2201 0.1114	198>202 0.1362	157 204 0.2577	197>202 0.1182
		2 4664 eV	3.023 eV		
	2.395 eV	198>201.0.6083	197>203 0.2962	3.273 eV	5.206 eV
S ₅	198>202 0.7501	198>2020 2020	198>204 0.2813	197>200 0.5413	197>204 0.2386
	197>202 0.1252	197>202 0.2285	198>201 0.2201	198>199 0.2141	198>203 0.2378
		157202 0.1300	197>202 0.1110		

	Excited states					
Crystal structure	Mean-value k-point	Gamma k-point				
	PBE	PBE B3LYP PBE0				
A:1 triclinic	S ₁	S ₁	S ₁	S ₁		
A·1 monoclinic	S ₁	S ₁	S ₁	S ₁		
A.I monocimic	S ₃	S ₃	S_4	S_5		
A:2 triclinic	S ₁	S ₁	S ₁	S ₁		
A:2 monoclinic	S ₁	S ₁	S ₁	S ₁		
	S ₃	S ₃	S ₃	S ₃		
A:3 triclinic	S ₁	S ₁	S ₁	S ₁		
A·3 monoclinic	S ₁	S ₁	S ₁	S ₁		
	S ₃	S ₃	S ₃	S ₃		
A:4 triclinic	S ₁	S ₁	S ₁	S ₁		
A·4 monoclinic	S ₁	S ₁	S ₁	S ₁		
	S ₃	S ₃	S ₃	S ₅		

Table S22. Correspondence between the TD-DFT excited states at the mean-value and gamma k-points.

1.2.5 Modelling of fluorescence line shapes

Hybrid functionals, such as B3LYP, provide most accurate excitation energies in TD-DFT calculations. Unfortunately, B3LYP calculations can only be performed at the gamma k-point. In order to approximate the energy difference between these k-points we have performed TD-DFT calculations with PBE functional:

$$\Delta E_{mean-\Gamma} = E_{PBE,mean} - E_{PBE,\Gamma}$$

1)

The energy difference from eq. 1 was used to approximate the B3LYP energy at the mean-value k-point:

$$E_{B3LYP,mean} = E_{B3LYP,\Gamma} + E_{PBE,mean} - E_{PBE,\Gamma}$$
(2)

The expression from eq. 2 was used to evaluate the excitation energy corresponding to the optimized geometry of the excited state (E_{max}) the geometry of the ground state (E_0) . The lines of the fluorescence spectra were described by a Gaussian function with the maximum at E_{max} and half-width related to the difference between E_{max} and E_0 :

$$\sigma = \frac{E_0 - E_{max}}{3}$$
3)

which gives the following expression for the fluorescence intensity:

$$I(E) = e^{-\frac{9}{2} \left(\frac{E - E_{max}}{E_0 - E_{max}}\right)^2}$$
(4)

Figure S2. Relationship between potential energy surfaces of the ground and excited electronic states (left) and the fluorescence line shape (right).

The relationship between potential energy surfaces of the electronic states and the resulting fluorescence line shapes is shown on Figure S2. The quantitative data used to construct fluorescence spectra is given in Tables S23-30.

The approach we have used herein to derive fluorescence line shapes is empirical. A full ab-initio line shape determination would involve phonon calculation both for the ground and excited state. Since TD-DFT calculations are currently restricted to a single k-point, phonon calculation for the electronic excited state would suffer from Brillouin zone convergence issues. Under such circumstances analytical derivation of fluorescence line shapes was deemed unfeasible. The empirical Gaussian line shapes, as we shall see, provide a good approximation to the experimental line shapes at a low computational cost. Table S23 TD-DFT excitation energies used to model fluorescence spectrum of the A:1 cocrystal in the triclinic form.

		Energy / eV				
Excited	Geometry	PBF mean-		B3LYP	B3LYP, mean-	
state	Geometry	value	PBE, Gamma	Gamma	value (derived	
		Value			using eq. 2)	
	Ground state	2.2729	1.9802	2.3739	2.6665	
S ₁	Optimized					
	excited state	2.1120	1.8008	1.9684	2.2797	

Table S24. TD-DFT excitation energies used to model fluorescence spectrum of the A:1 cocrystal in the monoclinic form.

		Energy / eV				
Excited state	Geometry	PBE, mean- value	PBE, Gamma	B3LYP, Gamma	B3LYP, mean- value (derived using eq. 2)	
S ₁	Ground state	1.8181	1.6720	2.4772	2.6233	
	Optimized excited state	1.6453	1.5018	2.2699	2.4134	
S ₃	Ground state	2.1551	2.0411	3.0128	3.1268	
	Optimized excited state	2.0617	1.9498	2.8467	2.9586	

Table S25. TD-DFT excitation energies used to model fluorescence spectrum of the A:2 cocrystal in the triclinic form.

		Energy / eV				
Excited	Geometry	PBF mean-		B3LYP	B3LYP, mean-	
state	Geometry	value	PBE, Gamma	Gamma	value (derived	
		Value			using eq. 2)	
	Ground state	2.2793	2.2222	2.4566	2.5136	
S ₁	Optimized					
	excited state	2.0848	2.0522	2.2208	2.2533	

Table S26. TD-DFT excitation energies used to model fluorescence spectrum of the A:2 cocrystal in the monoclinic form.

		Energy / eV				
Excited state	Geometry	PBE, mean- value	PBE, Gamma	B3LYP, Gamma	B3LYP, mean- value (derived using eq. 2)	
S ₁	Ground state	1.8410	1.7283	2.5123	2.6250	
	Optimized excited state	1.6598	1.5474	2.2925	2.4049	
S ₃	Ground state	2.2033	2.1283	2.9300	3.0050	
	Optimized excited state	2.1042	2.0313	2.7486	2.8216	

Table S27. TD-DFT excitation energies used to model fluorescence spectrum of the A:3 cocrystal in the triclinic form.

		Energy / eV				
Excited	Geometry	PBF mean-		B3LYP	B3LYP, mean-	
state	Geometry	value	PBE, Gamma	Gamma	value (derived	
		Value			using eq. 2)	
	Ground state	2.3251	2.2168	2.4533	2.5616	
S ₁	Optimized					
	excited state	2.1400	2.0324	2.2033	2.3108	

Table S28. TD-DFT excitation energies used to model fluorescence spectrum of the A:3 cocrystal in the monoclinic form.

		Energy / eV				
Excited state	Geometry	PBE, mean- value	PBE, Gamma	B3LYP, Gamma	B3LYP, mean- value (derived using eq. 2)	
S ₁	Ground state	1.8865	1.7880	2.5647	2.6633	
	Optimized excited state	1.6923	1.5915	2.3232	2.4240	
S ₃	Ground state	2.2509	2.2002	2.9817	3.0325	
	Optimized excited state	2.1522	2.1038	2.8113	2.8597	

Table S29. TD-DFT excitation energies used to model fluorescence spectrum of the A:4 cocrystal in the triclinic form.

		Energy / eV				
Excited	Geometry	PBF mean-		B3LYP	B3LYP, mean-	
state	Geometry	value	PBE, Gamma	Gamma	value (derived	
		Value			using eq. 2)	
	Ground state	2.2621	2.1695	2.4079	2.5005	
S ₁	Optimized					
	excited state	2.0716	1.9903	2.1693	2.2506	

Table S30. TD-DFT excitation energies used to model fluorescence spectrum of the A:4 cocrystal in the monoclinic form.

		Energy / eV				
Excited state	Geometry	PBE, mean- value	PBE, Gamma	B3LYP, Gamma	B3LYP, mean- value (derived using eq. 2)	
S ₁	Ground state	1.8585	1.7762	2.5674	2.6497	
	Optimized excited state	1.6638	1.5777	2.3225	2.4085	
S ₃	Ground state	2.2109	2.1781	2.9941	3.0268	
	Optimized excited state	2.0945	2.0639	2.7880	2.8186	

1.3 DOS calculations

Density of States (DOS) and Projected Density of States (PDOS) plots were computed for all materials using the program OptaDOS.^{10,11} PDOS partitioning was used to evaluate the contribution of coformer molecules to the bands responsible for electronic excitations. DOS were sampled at 0.001 eV intervals and the adaptive broadening¹² scheme was used with the

smearing parameter set to 1 Å. Convergence of the calculated band gap with respect to Brillouin zone sampling was tested and the k-point spacing of 0.015 Å⁻¹ was found to be sufficient.

Figure S3. DOS (green) and PDOS (red) plots for the triclinic structure of **A:1** cocrystal. The PDOS plot shows the contribution of coformer molecule to the total DOS. The HOCO (82) and LUCO (83) bands are marked with blue rectangles. It is evident that these bands are almost entirely localized on molecules **A**.

Figure S4. DOS (green) and PDOS (red) plots for the monoclinic structure of **A:1** cocrystal. The PDOS plot shows the contribution of coformer molecule to the total DOS. The pairs of nearly degenerate HOCO (163, 164) and LUCO (165, 166) bands are marked with blue rectangles. It is evident that these bands are almost entirely localized on molecules **A**.

Figure S5. DOS (green) and PDOS (red) plots for the triclinic **A:2** cocrystal. The PDOS plot shows the contribution of coformer molecule to the total DOS.The HOCO (94) and LUCO (95) bands are marked with blue rectangles. It is evident that these bands are almost entirely localized on molecules **A**.

Figure S6. DOS (green) and PDOS (red) plots for the monoclinic structure of **A:2** cocrystal. The PDOS plot shows the contribution of coformer molecule to the total DOS. The pairs of nearly degenerate HOCO (187, 188) and LUCO (189, 190) bands are marked with blue rectangles. It is evident that these bands are almost entirely localized on molecules **A**.

Figure S7. DOS (green) and PDOS (red) plots for the triclinic **A:3** cocrystal. The PDOS plot shows the contribution of coformer molecule to the total DOS. The HOCO (94) and LUCO (95) bands are marked with blue rectangles. It is evident that these bands are almost entirely localized on molecules **A**.

Figure S8. DOS (green) and PDOS (red) plots for the monoclinic structure of **A:3** cocrystal. The PDOS plot shows the contribution of coformer molecule to the total DOS. The pairs of nearly degenerate HOCO (187, 188) and LUCO (189, 190) bands are marked with blue rectangles. It is evident that these bands are almost entirely localized on molecules **A**.

Figure S9. DOS (green)and PDOS (red) plots for the triclinic **A:4** cocrystal. The PDOS plot shows the contribution of coformer molecule to the total DOS. The HOCO (99) and LUCO (100) bands are marked with blue rectangles. It is evident that these bands are almost entirely localized on molecules **A**.

Figure S10. DOS (green) and PDOS (red) plots for the monoclinic structure of **A:4** cocrystal. The PDOS plot shows the contribution of coformer molecule to the total DOS. The pairs of nearly degenerate HOCO (197, 198) and LUCO (199, 200) bands are marked with blue rectangles. It is evident that these bands are almost entirely localized on molecules **A**.

1.4 Band structure calculations

Band structure calculation was performed using the PBE functional with 0.015 Å⁻¹ k-point spacing. Band dispersion was computed along the following k-point path:

- 1. 0, 0, 0
- 2. ½, 0, 0
- 3. 1/2, 1/2, 0
- 4. 0, ½, 0
- 5. 0, ½, ½
- 6. 1/2, 1/2, 1/2
- 7. ½, 0, ½
- 8. 0, 0, 1/2
- 9. 0, 0, 0

The band structure plots are shown in Figures S11-S18. Each plot shows the 10 highest occupied and 10 lowest unoccupied electronic bands.

In addition to the plane-wave calculations, band structures for the triclinic and monoclinic structures of the cocrystals were calculated in the code CRYSTAL14¹³ using a localized TZVP basis set specially modified for periodic calculations.¹⁴ Localized basis sets are more suitable for calculations with hybrid DFT functionals, therefore CRYSTAL calculations were used to calculate band structure plots with B3LYP functional and compare it with the PBE band structures. The results of these calculations are shown in figures S19-S25 and Table S31.

Figure S11. Band structure plot for the triclinic structure of the A:1 cocrystal. Bands ranging from HOCO-9 to LUCO+9 are shown. The dashed red lines represent the energies of the HOCO and LUCO bands at the mean-value k-point.

Figure S12. Band structure plot for the monoclinic structure of the **A:1** cocrystal. Bands ranging from HOCO-9 to LUCO+9 are shown. The dashed red lines represent the energies of the (HOCO-1, HOCO) and (LUCO, LUCO+1) band pairs at the mean-value k-point.

Figure S13. Band structure plot for the triclinic structure of the **A:2** cocrystal. Bands ranging from HOCO-9 to LUCO+9 are shown. The dashed red lines represent the energies of the HOCO and LUCO bands at the mean-value k-point.

Figure S14. Band structure plot for the monoclinic structure of the **A:2** cocrystal. Bands ranging from HOCO-9 to LUCO+9 are shown. The dashed red lines represent the energies of the (HOCO-1, HOCO) and (LUCO, LUCO+1) band pairs at the mean-value k-point.

-4

Figure S15. Band structure plot for the triclinic structure of the **A:3** cocrystal. Bands ranging from HOCO-9 to LUCO+9 are shown. The dashed red lines represent the energies of the HOCO and LUCO bands at the mean-value k-point.

Figure S16. Band structure plot for the monoclinic structure of the **A:3** cocrystal. Bands ranging from HOCO-9 to LUCO+9 are shown. The dashed red lines represent the energies of the (HOCO-1, HOCO) and (LUCO, LUCO+1) band pairs at the mean-value k-point.

Figure S17. Band structure plot for the triclinic structure of the **A:4** cocrystal. Bands ranging from HOCO-9 to LUCO+9 are shown. The dashed red lines represent the energies of the HOCO and LUCO bands at the mean-value k-point.

-3

Figure S18. Band structure plot for the monoclinic structure of the **A:4** cocrystal. Bands ranging from HOCO-9 to LUCO+9 are shown. The dashed red lines represent the energies of the (HOCO-1, HOCO) and (LUCO, LUCO+1) band pairs at the mean-value k-point.

Figure S19. Band structure plots for the triclinic structure of the A:1 cocrystal. From left to right: BS calculated with PBE functional using plane-wave basis set in CASTEP, BS calculated with PBE functional using TZVP localized basis set in CRYSTAL and BS calculated with B3LYP functional using TZVP localized basis set in CRYSTAL. The PBE BS plots calculated using plane-wave and TZVP basis sets are in good agreement. The B3LYP band structure shows a larger band gap.

Figure S20. Band structure plots for the monoclinic structure of the **A:1** cocrystal. From left to right: BS calculated with PBE functional using plane-wave basis set in CASTEP, BS calculated with PBE functional using TZVP localized basis set in CRYSTAL, BS calculated with B3LYP functional using TZVP localized basis set in CRYSTAL. The PBE BS plots calculated using plane-wave and TZVP basis sets are in good agreement. The B3LYP band structure shows a larger band gap.

Figure S21. Band structure plots for the triclinic structure of the A:2 cocrystal. From left to right: BS calculated with PBE functional using plane-wave basis set in CASTEP, BS calculated with PBE functional using TZVP localized basis set in CRYSTAL, BS calculated with B3LYP functional using TZVP localized basis set in CRYSTAL. The PBE BS plots calculated using plane-wave and TZVP basis sets are in good agreement. The B3LYP band structure shows a larger band gap.

Figure S22. Band structure plots for the monoclinic structure of the **A:2** cocrystal. From left to right: BS calculated with PBE functional using plane-wave basis set in CASTEP, BS calculated with PBE functional using TZVP localized basis set in CRYSTAL, BS calculated with B3LYP functional using TZVP localized basis set in CRYSTAL. The PBE BS plots calculated using plane-wave and TZVP basis sets are in good agreement. The B3LYP band structure shows a larger band gap.

Figure S23. Band structure plots for the triclinic structure of the A:3 cocrystal. From left to right: BS calculated with PBE functional using plane-wave basis set in CASTEP, BS calculated with PBE functional using TZVP localized basis set in CRYSTAL, BS calculated with B3LYP functional using TZVP localized basis set in CRYSTAL. The PBE BS plots calculated using plane-wave and TZVP basis sets are in good agreement. The B3LYP band structure shows a larger band gap.

Figure S24. Band structure plots for the monoclinic structure of the **A:3** cocrystal. From left to right: BS calculated with PBE functional using plane-wave basis set in CASTEP, BS calculated with PBE functional using TZVP localized basis set in CRYSTAL, BS calculated with B3LYP functional using TZVP localized basis set in CRYSTAL. The PBE BS plots calculated using plane-wave and TZVP basis sets are in good agreement. The B3LYP band structure shows a larger band gap.

Figure S25. Band structure plots for the triclinic structure of the **A:4** cocrystal. From left to right: BS calculated with PBE functional using plane-wave basis set in CASTEP, BS calculated with PBE functional using TZVP localized basis set in CRYSTAL, BS calculated with B3LYP functional using TZVP localized basis set in CRYSTAL. The PBE BS plots calculated using plane-wave and TZVP basis sets are in good agreement. The B3LYP band structure shows a larger band gap.

Table S31. Comparison of calculated band gaps. CASTEP-PBE band gaps are approx. 0.1 eV lower than PBE band
gaps calculated in CRYSTAL. The difference between PBE and B3LYP band gaps is 0.95-1 eV for all crystal structures,
both triclinic and monoclinic. The B3LYP band gaps also compare favorably to the TD-DFT energy for excited state
S ₁

.

Cocrystal		Band gap / eV			TD-DFT B3LYP	CRYSTAL
		CASTEP PBE	CRYSTAL PBE	CRYSTAL B3LYP	energy of the S ₁ excited state	B3LYP-PBE band gap difference
۸.1	triclinic	1.591	1.706	2.661	2.667	0.955
A.1	monoclinic	1.508	1.657	2.620	2.623	0.963
۸.2	triclinic	1.689	1.782	2.746	2.514	0.963
A:Z	monoclinic	1.647	1.801	2.784	2.625	0.982
٨.2	triclinic	1.701	1.801	2.770	2.562	0.969
A.5	monoclinic	1.725	1.859	2.852	2.663	0.993
A:4	triclinic	1.663	1.766	2.721	2.501	0.955
	monoclinic	1.694	-	-	2.650	-

2. Calculation of fluorescence spectra for molecules in the gas phase.

Emission spectra for molecule **A** was calculated with GAUSSIAN16 software. Calculations were performed at TD-DFT/B3LYP level of theory using 6-311G(d,p) basis set. First geometry optimizations were performed for the DFT ground state and TD-DFT S₁ excited state. Then vibrational frequency calculations were performed for both electronic states in their optimized geometries. Finally, Franck-Condon factors for electronic-vibrational transitions were calculated.

References

- Clark, S. J.; Segall, M. D.; Pickard, C. J.; Hasnip, P. J.; Probert, M. I. J.; Refson, K.; Payne, M.
 C. First Principles Methods Using CASTEP. *Z. Kristallogr.*. 2005, 220, 567–570.
- Rappe, A. M.; Rabe, K. M.; Kaxiras, E.; Joannopoulos, J. D. Optimized Pseudopotentials.
 Phys. Rev. B 1990, 41, 1227–1230.
- Yan, D.; Delori, A.; Lloyd, G. O.; Friščić, T.; Day, G. M.; Jones, W.; Lu, J.; Wei, M.; Evans, D.
 G.; Duan, X. A Cocrystal Strategy to Tune the Luminescent Properties of Stilbene-Type
 Organic Solid-State Materials. *Angew. Chem. Int. Ed.* 2011, *50*, 12483–12486.
- Monkhorst, H. J.; Pack, J. D. Special Points for Brillouin-Zone Integrations. *Phys. Rev. B* 1976, 13, 5188–5192.
- (5) Grimme, S. Semiempirical GGA-Type Density Functional Constructed with a Long-Range Dispersion Correction. J. Comput. Chem. 2006, 27, 1787–1799.
- (6) Baldereschi, A. Mean-Value Point in the Brillouin Zone. *Phys. Rev. B* **1973**, *7*, 5212–5215.
- Magyar, R. J.; Tretiak, S. Dependence of Spurious Charge-Transfer Excited States on Orbital Exchange in TDDFT: Large Molecules and Clusters. J. Chem. Theory Comput. 2007, 3, 976–987.
- (8) Dreuw, A.; Weisman, J. L.; Head-Gordon, M. Long-Range Charge-Transfer Excited States in Time-Dependent Density Functional Theory Require Non-Local Exchange. J. Chem. Phys. 2003, 119, 2943–2946.
- (9) Tozer, D. J. Relationship between Long-Range Charge-Transfer Excitation Energy Error and Integer Discontinuity in Kohn-Sham Theory. *J. Chem. Phys.* **2003**, *119*, 12697–12699.
- (10) Morris, A. J.; Nicholls, R. J.; Pickard, C. J.; Yates, J. R. OptaDOS: A Tool for Obtaining Density of States, Core-Level and Optical Spectra from Electronic Structure Codes. *Comput. Phys. Commun.* **2014**, *185*, 1477–1485.
- (11) Nicholls, R. J.; Morris, A. J.; Pickard, C. J.; Yates, J. R. OptaDOS a New Tool for EELS

Calculations. J. Phys. Conf. Ser. 2012, 371, 012062.

- Yates, J. R.; Wang, X.; Vanderbilt, D.; Souza, I. Spectral and Fermi Surface Properties from Wannier Interpolation. *Phys. Rev. B* 2007, *75*, 195121.
- (13) Dovesi, R.; Orlando, R.; Erba, A.; Zicovich-Wilson, C. M.; Civalleri, B.; Casassa, S.; Maschio,
 L.; Ferrabone, M.; De La Pierre, M.; D'Arco, P.; et al. CRYSTAL14 : A Program for the *Ab Initio* Investigation of Crystalline Solids. *Int. J. Quantum Chem.* 2014, 114, 1287–1317.
- (14) Peintinger, M. F.; Vilela Oliveira, D.; Bredow, T. Consistent Gaussian Basis Sets of Triple-Zeta Valence with Polarization Quality for Solid-State Calculations. *J. Comput. Chem.* 2013, 34, 451–459.