¦V¶q»P±i¶q (I)
¦V¶qªº©w¸q»P°ò¥»¥N¼Æ¹Bºâ
«e¨¥¡G¤°»ò¬O¦V¶q¡H¬°¦ó¥Î¦V¶q¡H
§O¦AÁ¿ "¦³¤j¤p ¡B¦³¤è¦V . . ." , ¤¤¾Ç¥Í level
rotation is not a vector (infinitasimal rotation is)
![]()
«ä¦Ò¡G§Ú̦pªGµw©ó±NÂà°Ê·í§@¦V¶q¡A·|¾ÉP¤°»ò¤£§´¡H¥[ªk¤£¥i¥æ´«¡A·N¨ýµÛ¦V¶q "§@¹Ïªk" ¬Û¥[©w¸qùرªº¥²¾«ß¤£¦A¾A¥Î¡C
°Ý¡G¨º¤À¶¥¬qÂà°Êªºµ²ªG¡A´N¨S¦³¼Æ¾Çªí¥Üªk¤F¶Ü¡H
¦³¦P¾Ç°Ý¨ì¡AÁÙ¦³¤°»ò¬O¤£¥i¥æ´«ªº¨Ò¤l¡Cª«²z¤W³Ì¦³¦Wªº¨Ò¤l¡A¬O "¹ï x ·L¤À ºâ¤l (d/dx)" »P "¼¤W x ºâ¤l" ¡A¨ä§@¥Î¶¶§Ç¤£¥i¥æ´«¡C ¥t¥~¨âÓ²³æªº¨Ò¤l¡C¹ï¤@Ó¥ô·N¨ç¼Æ¡A¥ý¼¥H¤G¦A¥¤è¡A¥ý¥¤è¦A¼¥H¤G¡A¨âªÌµ²ªG¤£¦P¡C¦b²y±¤W¡A+ θ «×¥Xµo¨« a ¶ZÂ÷«á¡A¦A ¥H - 2θ «×¤è¦V¨« a ¶ZÂ÷¡F»P¥ý - θ¥Xµo¨« a ¶ZÂ÷«á¡A¦A ¥H 2θ «×¤è¦V¨« a ¡Aµ²ªG¤£¦b¦P¤@ÂI¤W¶ZÂ÷¡C¡]¥H¤W¤T¨Ò½Ð¦Û¦æÅçÃÒ¡C¡^
¸ÑªR´X¦ó¡]¤Þ¤J®y¼Ð¡^
¦V¶q»P¯Â¶q¤£¦P
¯Â¶q ex : ·Å«×¤À§G¡B®ðÀ£¤À§G
¦V¶q ex : ·³t¤À§G
A = A A^ ¡]¨ä¤¤ A^ = A / |A| ¡^
¥H®y¼Ð¼g¥X¡]¥H¤À¶qªº¤è¦¡¨Óªí¥Ü¦V¶q¡^
A = A1 e^1 + A2 e^2 + A3 e^3 = Σ Ai e^i
A = (A1, A2, A3)
¦n³B : ¥i»´©ö±À¼s¨ì°ªºû«× (¤£µM§Aµeµe¬Ý)
¤è¦V¨¤»P¤è¦V¾l©¶
³æ¦ì¦V¶q A^ ¥i¶i¤@¨B¥Î®y¼Ð¶b³æ¦ì¦V¶q e^1, e^2, e^3 ªí¥Ü
¦]¬° A = A1 e^1 + A2 e^2 + A3 e^3
¦]¦¹ A = A (A1/A e^1 + A2/A e^2 + A3/A e^3)
¥H¤U¦Cz¦V¶qªº©Ê½è¡A¦b¸ÑªR´X¦ó¡]«D§@¹Ïªk¡^¤U°ò¥»¹Bºâªk«h¡G
¦V¶q¥N¼Æ
¬Ûµ¥
¨â¦V¶q¬Ûµ¥ iff ¨ä¦U¤À¶q¥þµ¥
¬Û¥[
A + B = (A1, A2, A3) + (B1, B2, B3) = (A1+B1, A2+B2, A3+B3)
A + B = B + A
(¥[¼Æ¡B³Q¥[¼Æªº¤@¥N)
¼«Y¼Æ
c A = (cA1, cA2, cA3)
¼Æ©Î¦V¶q³£¤£¥i¥H°£¥H¦V¶q, ¦p c / A ©Î B / A
¤º¿n
A · B = A B cosθ
¤]¥i¼g¦¨¥H¤À¶q¤è¦¡ªí¥X
A · B = (A1 e^1 + A2 e^2 + A3 e^3) · (B1 e^1 + B2 e^2 + B3 e^3)
¤W¦¡¦p¦óºâ¥X¨Ó¡H¨Ï¥Î¤À°t«ß¡A¨Ã»Ýn¥Î¨ì ®y¼Ð¶b³æ¦ì¦V¶q¶¡¤º¿nªºµ²ªG
e^i · e^j = ?
¡]¹ïª½¨¤(¥¿¥æ)®y¼Ð¦Ó¨¥¡A¯S§O²³æ¡^
e^i · e^j = δij
Kronecker delta δij
δij = 1 if i = j,
δij = 0 if i ≠j,¬G A · B = Σi Ai Bi
¥~¿n
C = A × B
A × B = A B sinθ e^C
e^i × e^i = 0
e^1 × e^2 = e^3
¥H¦æ¦C¦¡ªº¤è¦¡¨Ó¼g¨âÓ¦V¶q¥~¿n :
![]()
®y¼Ð¶b¤ÏÂà (inversion)
polar vector ªÌ¡G·|Åܸ¹
pseudovector, axial vector ªÌ¡G¤£Åܸ¹
¥H permutation symbol¡]¤S¥s Levi-Civita symbol¡^ εijk ªº¤è¦¡¨Ó¼g¨âÓ¦V¶q¥~¿n¡G
permutation symbol εijk
εijk = 1 , if {i j k} form even permutation ;
εijk = -1, if {i j k} form odd permutation ;
εijk = 0, two or more identical indiceseven ¤Î odd permutation ªº·N«ä(©ÎÀËÅ窺¤èªk) : (±q¶¶±Æ 123 ... °_©l) ¹ï½Õ¨â«ü¼Ð(È) °¸¼Æ¦¸¯à§Î¦¨ªº±Æ¦C, even permutation
(an odd permutation can not be an even permutation )
¨Ï¥Îεijk ¡A¦³
ei × ej = εijk ek
A × B = Σijk εijk ei Aj Bk
«nÃö«Y Σk=13 εmnk εijk = δmi δnj - δmj δni
¯Â¶q¤T«¿n
A · ( B × C ) = B · ( C × A ) = C · ( A × B )
¬Û·í©ó¤TÓ¦V¶q±i¦¨ªº¥¦æ¤»±ÅéÅé¿n¡]¨£¤U½Ò¥»¹Ï¡^
Y corrde. axis vector °fÂà¦V¡A¯Â¶q¤T«¿n´N·|Åܸ¹¡A¬G¤S³QºÙ¬°¬O¤@Ó pseudoscalar ¡]°²¯Â¶q¡^
¡]¥t¦³¤@ºØ¦V¶q³QÂkÃþ¬° axial vector¡A¤S¥s pseudovector¡A®y¼Ð¶b³æ¦ì¦V¶q °fÂà ¤U¤£·|Åܸ¹¡A¤£¹³¬O¤@¯ë polar vector ·|Åܸ¹¡CY A¡BB ¬O polar vector¡A«h C = A × B ¤¤ªº C ´N¬O axial vector¡C¡^
¦V¶q¤T«¿n
A × ( B × C ) = B (A · C) - C (A · B)
°ÝÃD¡G¨º§ÚÌ«ç»òª¾¹D¡A¤@Ó¶q¬O©Î¤£¬O¦V¶q¡H ´«¥y¸Ü»¡¡A¦V¶qªº²×·¥©w¸q¬O¤°»ò¡H
¡]§Ú̳£¤w±Ð¤F¦V¶qªº¤À¶q¦p¦ó¨D±o¤F¡AÁÙ¤£¬O©w¸q¶Ü¡H¡^