±è«×¡B´²«×¡B±Û«×¡B¨ä±`¥Î¤½¦¡¡B»P¥¿¥æ¡]²y¡B¬W¡^®y¼Ð¨t
¦V¶q·L¤À
¯Â¶q³õ·L¤À»P±è«×
·Å«×³õ¡B°ª«×¡]®ü©Þ¡^¡B®ðÀ£³õ¡]³õ¬OªÅ¶¡ªº¤À§G¡^
«O¦u¦V¶q³õ
W = ∫ab F · ds
«O¦u¤O§@¥\¡A¶È»Pªì¡B¥½¦ì¸m¦³Ãö¡A¦Ó»P¸ô®|µLÃö¡C§Y¤W¦¡
W = ∫ab F · ds = U(b) - U(a)
³o·N¨ýµÛ F · ds = dU¡A§Y¦s¦b ¤@ U(x1, x2, x3)¡A¨ä
dU = (∂U /∂x1) dx1 + (∂U /∂x2) dx2 + (∂U /∂x3) dx3
= ( ∂U /∂x1 , ∂U /∂x2 , ∂U /∂x3 ) · (dx1, dx2, dx3) = (∇U) · dr
¦V¶q·L¤Àºâ¤l ∇ (Ū°µ nabla ©Î del)
∇ ≡ ( ∂/∂x1 , ∂/∂x2 , ∂/∂x3 )
¦V¶q³õªº¦V¶q·L¤À
´²«×
∇· A = ( ∂/∂x1 , ∂/∂x2 , ∂/∂x3 ) · (A1, A2, A3)
= ∂A1 /∂x1 + ∂A2 /∂x2 + ∂A3 /∂x3
¬O¤@ӯ¶q
´²«×ªº·N¸q¡G
¦pªG¤@Ó¦V¶q³õ¬O¥Ñ¬YºØ "·½" ©Ò²£¥Íªº¡A¨º»ò³oÓ³õ¦bªÅ¶¡³B³Bªºªº´²«×È·|¬ðÅã¥X¸Ó "·½" ¦s¦b»P§_¡C
±q³sÄò¤èµ{¦¡²z¸Ñ "´²" «×
¦Û¦æ¨£½Ò¥»»¡©ú¡A·|¦Ò¡C
∇2
∇2 φ = 0 ¥s Laplace ¤èµ{¦¡¡A«n¡C
∇2 §@¥Î¦b¦V¶q³õ»P¯Â¶q³õ³£¥i¥H¡C
±Û«×
µ½¥Î εijk ©w¸q ³B²z¤U¦CÃÒ©ú
∇ × ∇φ = 0
¥Î¨ì εijk ªº¤Ï¹ïºÙ©Ê¡A¤]´N¬O εijk = -εikj ¡C
±`¥Î¤½¦¡
§@·~¡GÅçÃÒ¤W¦C¤Q¤Ó¤½¦¡¡C(¤½¦¡ (6) ³Ì«á¤@Ó × À³§@ · )
´£¥Ü¡Gµ½¥Î εijk »P δij µ¥Ãö«Y¦¡
¥¿¥æ¦±½u©Ê®y¼Ð¨t
¨£½Ò¥»±À¾É¡AÃöÁä·§z¦p¤U¡G
º¥ý¡A¦b¤£¥¢¤@¯ë©Êªº±¡ªp¤U¡A¥ô¦ó®y¼ÐÅÜ´«Á`¬O¦s¦b·s¡B®y¼Ð¦ì¸mªº©w¸q¡G
¨£¹Ï 1.16
·s®y¼Ð¶bªº²£¥Í
¤W±³o¤@²Õªº¤TÓ¨ç¼Æ¡A·|§âÅ骺¥ô¤@ÂI¹ïÀ³¨ì¥t¤@ÂI¡A§Gº¡¤TºûªÅ¶¡¡C
³oùئpªG§ÚÌ©T©w¦í u2, u3 ¦Ó¥uÅý u1 °Ê¡A´N¯à±½´y¥X¤@±øªÅ¶¡¦±½u¡A´N¥i¥H§â¥¦Ìªº¤Á½u¦V¶q¡A®³¨Ó§@¬°®y¼Ð¶bªº¤è¦V¡A´N¹³©ó«e³æ¤¸±Ä¥Î³æ¤@ t ©Î©·ªø s §@¬°°Ñ¼Æ®É¡A¥i©w¸q¤Á½u¤è¦V¤Î³æ¦ì¤Á¦V¶q¨º¼Ë¡C¡]¦Ü©ó³o¼Ë°µ¥X¨Óªº®y¼Ð¶b³æ¦ì¦V¶q¡A¨Ã¤£«OÃÒ¥¿¥æ¡C¡^
¤p½u¬q¤¸¯ÀªºÅÜ´«
§â ∂r /∂ui ªº¤è¦V©w¬° ui^¡Aªø«× |∂r /∂ui| ©w¬° hi ¡]¤S¥s scale factor¡^¡A«h¤W¦¡¦¨¬°
§Ú̲{¦b³W©w u^1, u^2, u^3 ¤¬¬°¥¿¥æ¡A²{¦b¦A¨Ó¬Ý¤pÅé¿n¤¸¯À¦p¦óÅÜ´«
¤pÅé¿n¤¸¯ÀªºÅÜ´«
«ÂI¬O¡GÅÜ´«®É¡A¼¤W Jacobian¡C
Jacobian ¤£µ¥©ó 0 ®É¡A§½³¡¦³ 1¹ï1 Âà´« ¡]³o¬O½Ò¥»´£¿ô¡^¡C
¡]¬°¤°»ònÁ¿³oÓ¡H¦]¬°¥¼¨Ó·|¦³»Ýn§â ∫ f(x,y,z) dxdydz ´«¦¨ ∫ f(u1,u2,u3) J du1du2du3 ®É¡A´Nn¦b·L¤pÅé¿n¤¸¯À¤W¼¤W J¡C¡^
±è«×ºâ¤l¡B´²«×ºâ¤l¡B±Û«×ºâ¤l¡B©Ô¤R©Ô´µºâ¤lªºÅÜ´« (§Y¥¦Ì¦b«D¥d¤ó®y¼Ð¨tªº¤½¦¡)
³q¦¡
±è«×
¥ý¬Ýµ²ªG¤½¦¡
±À¾É°_ÂI
°²³]
ª`·N fi ¤£¬O¥»¸`¤@¶}©l ½Í¨ì¤§ ®y¼ÐÅÜ´«¨ç¼Æ f, g, h ¡A¦Ó¬O¬Y¨ç¼Æ±è«×¤§¤À¶q¡C
«e¦³
¥Ñ©ó u^1, u^2, u^3 ¦Û¦¨¤@ "¥¿¥æÂk¤@" ®y¼Ð¨t (³o¬O«e´£°²³])¡A¬G¦³ ¡]¥Î¤W± ∇φ ªº¤½¦¡»P dr ªº¤½¦¡¡^
¦ý¤S®Ú¾Ú¥þ·L¤À¤§°ò¥»©w¸q¡A¤U¦¡¤@©w¦¨¥ß
ºî¦X«e¨â¦¡±ø¥ó¡A§Y±o
hi fi = ∂φ/∂ui¡A§Y fi = (1/hi) ∂φ/∂ui
±oÃÒ즡
¸É¥R¡Ghi ¬O¦³´X¦ó¾Ç¤Wªº·N¸qªº¡A¸Ô¨£¨ä¥L±Ð¬ì®Ñ¡C
´²«×¹w³Æ
·|§Q¥Î¨ìªº¨âÓÃö«Y
(a) ªºÃÒ©ú
§Q¥Î«e¤wÃÒ¤§ ∇φ ¤½¦¡¡A®M¥Î¦b u1 ¤W¡A ∇u1 = (1/h1) (∂u1/∂u1) u1^ + 0 + 0 = (1/h1) u1^¡A¬G ¨äªø«× | ∇u1| = 1/h1¡C
(b) ªºÃÒ©ú
¥Ñ (a) §Ú̦³ ∇u1 = (1/h1) u1^ ¡A∇u2 = (1/h2) u2^¡A∇u3 = (1/h3) u3^
∇u2 × ∇u3 = 1/(h2 h3) u2^ × u3^ = 1/(h2 h3) u1^
¡]¬°¤°»ò u2^ × u3^ = u1^ ¡H ¡^
¬G u1^ = h2 h3 ∇u2 × ∇u3 ¡A±oÃÒ¡C
´²«×
ÃÒªk
∇ · A = ∇ · (Σi Ai ui^) = ∇ · ( A1 u1^) + ∇ · ( A2 u2^) + ∇ · ( A3 u3^) ¡]¤À°t«ß¡^
¨ä¤¤¥ý¬Ý ∇ · ( A1 u1^)
§Q¥Î«e±ªº u1^ = h2 h3 ∇u2 × ∇u3 ¡A¦³
∇ · ( A1 u1^) = ∇ · ( A1 h2 h3 ∇u2 × ∇u3 )
= ∇( A1 h2 h3) · (∇u2 × ∇u3 ) +( A1 h2 h3) ∇· ( ∇u2 × ∇u3 )
¦A§Q¥Î«e±ªº ∇ui = (1/hi) ui^
¤W¦¡ = (1/h1) (∂ A1 h2 h3 / ∂ u1) [1/ (h2 h3)] + 0
²Ä¤G¶µ¬°¹s¬O¦]¬°¨Ï¥Î¤F"¹ï¥ô¦ó¨ç¼Æ f, g ¡A ∇· ( ∇f × ∇g ) = 0 " ³o¤@Ó¯S©Ê¡C¡]¦P¾Ç̦ۤv¥i§Q¥Î ∇· ( A × B ) = ... ªº¤½¦¡ÃÒ©ú¬Ý¬Ý (¥Î«e± 15 ±ø¤½¦¡¤§ (4) ©M (6) )¡A¤£·|°µ¥i¨£ Riley ®Ñ¡C¡^
(¥ç¥i¥Ñ ∇u2 × ∇u3 = (u^2/ h2) × (u^3/ h3) = u^1/ (h2h3)¡A
¡]½Ò¤å´£¨ÑªºÃÒªk¡A¸û¤£¤è«KªºÂI¤]¦b¦¹¡C¦]¬°¬JnÃÒ©ú∇· ( ) ªº§Î¦¡¡A¥B©|¥¼ÃÒ¥X¡A´N¤S»Ýn ¥Î¨ì∇· ( ) ªº¤½¦¡¡C¡^
¸É¥R¡G¤]¥i¨Ï¥Î ∇· A ≡ limΔV→0 (∫CS A · ds ) / ΔV ¡A§Y·L¤pÅé¿nªº³q¶q¡]¦V¶q±¿n¤À¡^¨Ó²z¸Ñ ∇· (u1^) = 0 ªº²z¥Ñ¡C
«ä¦Ò¡G¬°¤°»ò ∇¤£¬O¥Î¦V¶q¤À¶qªºÂà´«¤½¦¡´N¦n¡A¨ä¸ÑªGÁÙ³o»ò½ÆÂø¡H §Ú̧â ∇¼g¦¨¦V¶qªº¼Ë¤l¡A¾Þ§@³W«h¤]«Ü¹³¡A¥¦¨ì©³¬O¤£¬O¦V¶q¡AY¤£¬O¡A¬°¦ó»P¦V¶q¦p¦¹¬Û¹³¡H
¸Þ½×¦¡ªº±À¾É
∇ · ( A1 u1^) = ∇A1 · u1^ + A1∇ · u1^
¨ä¤¤¡A²Ä¤@¶µ¤¤ªº
∇A1 = (1/h1) (∂A1/ ∂ u1) u1^ + (1/h2) (∂A1/ ∂ u2) u2^ + (1/h3) (∂A1/ ∂ u3) u3^
¬G
∇A1 · u1^ = (1/h1) (∂A1/ ∂ u1)
¥t¥~¡A²Ä¤G¶µ¤¤ªº
∇ · u1^ = 0
ºî¦X¨â¶µ¡A
∇ · ( A1 u1^) = (1/h1) (∂A1/ ∂ u1)
»Pè¤~¤W±¾É¥X¨Óªº¤£¤@¼Ë¡A¨ºùب£¨ì°¤F¡H
©Ô¤R©Ô´µºâ¤l
«e±¤wª¾
²Õ¦X¨Ï¥Î¡A¥i±o
°ÝÃD¡G§ÚÌ«ç»òª¾¹D¤W±ªº¾Þ§@¬O¦Xªkªº¡H¯uªº¥i¥H³o¼Ë®M¥Î¶Ü¡H¬°¤°»ò¡HÃø¨ì¨S¦³¤@Ó "¥¿²Î®y¼ÐÂà´«" ¡A©Î¬O "¼s¸q·L¤À©w¸q" ªº¤èªk¡AÅý§ÚÌ¥i¥Hª½±µ¬Ý¨ì¤Wz¦U³q¦¡¡H
±Û«×
¤@¼Ë±q ∇× A = ∇× (A1 u1^ + A2 u2^ + A3 u3^) ¶}©l ¬Ý u1 ¤À¶q
∇× (A1 u1^) = ∇× ( A1 h1∇u1 )
= ∇( A1 h1) × ∇u1 + A1 h1 ∇× ∇u1 = ∇( A1 h1) × ∇u1 + 0
= ∇( A1 h1) × (u1^ / (h2h3))
= Σijk εijk ui^ [(∂/∂uj ) (A1 h1)] [(u1^/ (h2h3)]|k
= Σijkεijk ui^ [(∂/∂uj ) (A1 h1)] [(1/ (h2h3)]k δ1k
= Σij εij1 ui^ [(∂/∂uj ) (A1 h1)] [(1/ (h2h3)]
= εi=2,j=3,1 ui^ [(∂/∂uj ) (A1 h1)] [(1/ (h2h3)] + εi=3,j=2,1 ui^ [(∂/∂uj ) (A1 h1)] [(1/ (h2h3)]
= u2^ [(∂/∂u3 ) (A1 h1)] [1/ (h2h3)] − u3^ [(∂/∂u2 ) (A1 h1)] [1/ (h2h3)]
= [1/ (h2h3)] [ u2^ (∂/∂u3 ) (A1 h1) − u3^ (∂/∂u2 ) (A1 h1)]
¡]´£¿ô¡G¬Ý¨ì × ´N¥N¤J εijk ¡AµM«á³]ªkÅý εijk ®ø¥¢¡A¬O±`¨£ªº§@ªk¡^
½Ò¥»ªº§@ªk¡]˼ƲĤG¦æ¬A©·¤ºÀ³¥þ¬O A1 h1 ¤~¹ï¡^
ºî¦X¤TÓ³¡¤À¡A§¹¾ãªºµ²ªG¬O¡G
¤]¥i¼g¦¨¦æ¦C¦¡§Î¦¡
°ÝÃD¡G§ÚÌ«ç»òª¾¹D«e±ªº (1) ~ (14) ¦¡¹ï¦±½u©Ê®y¼Ð¨t¤]¬O¹ïªº¡H
©Î¥ý°Ý²³æ¤@ÂI¡G§ÚÌ«ç»òª¾¹D ¡A¨º¨Ç¤½¦¡¡A¦b¥t¤@Ó¥d¤ó®y¼Ð¬O¹ïªº¡H
∇· v¡B∇× v ¡B ∇v ªº¤£ÅÜ©Ê¡]¶i¶¥¡^
¥Î±i¶qªº»y¨¥¨Ó¤F¸Ñ¡]¤£¦P®y¼Ð¤U¡A§Î¦¡¤@¼Ë¡A±i¶q´N¬O¦b´yz³o¹³ªºªF¦è¡C¡^
¤@¥»¤£¿ùªº¤p®Ñ¡GJ. G. Simmonds, A Brief on Tensor Analysis
±`¥Î¥¿¥æ®y¼Ð¨t
¬W®y¼Ð¨t
¡]¨£½Ò¥»¹Ï 1.17¡^
x1 = ρ cosφ, x2 = ρ sinφ, x3 =z
¥»¨Ò¤¤¡A hrho = 1¡Bhphi = ρ¡Bhz = 1¡C
ÃÒ©ú¨£¤U¡G
¤èªk¤@
¥Ñ¹Ï¥i¨£
dr = dρ eρ + ρ dφ eφ + dz ez = [1] dρ eρ + [ρ] dφ eφ + [1] dz ez
ª`·N ρ dφ ªº·N«ä¡C ±oÃÒ
¤èªk¤G
¥Ñ¹Ï¥i¨£
eρ = cosφ ex + sinφ ey
eφ = - sinφ ex + cosφey
·N¿×µÛ
ex= cosφeρ- sinφ eφ
ey= sinφeρ + cosφeφ
¦¹¥~¡A±q x = ρ cosφ, y = ρ sinφ ªº©w¸q¡A¦³
dx = cosφdρ - ρsinφ dφ
dy = sinφdρ + ρ cosφ dφ
²{¦b¡A±q dr = dx ex + dy ey + dz ez ¥Xµo¡A¤À§O¥N¤J¤W±èè¾ã²z¥X¥¼ªº ex¡Beφ ¤Î dx¡Bdy¡C´N¥i¥H§â dr ¤Æ¦¨¥þ¥Ñ dρ¡Bdφ ¤Î eρ¡B eφ ©Òºc¦¨¡C
dr = dx ex + dy ey + dz ez= (cosφdρ - ρsinφ dφ) (cosφeρ- sinφ eφ) + ( sinφdρ + ρ cosφ dφ ) (ey= sinφeρ + cosφeφ ) + dz ez
§Q¥Î cos2θ + sin2θ = 1
³Ì«á¡A±o
dr = dρ eρ + ρdφeφ + dz ez
¡]¹ï¦æ¦C¦¡¼¤W¤@Ó«Y¼Æ¡Aµ¥¦P©ó¹ï¨ä¬Y¤@¦æ©Î¤@¦C¦P¼¸Ó«Y¼Æ¡^
²y®y¼Ð
¡]¨£½Ò¥»¹Ï 1.18¡^
x1 = r sinθcosφ, x2 = r sinθsinφ, x3 = r cos θ
¤@¼Ë¥Î ds2 ¥h¹ï¥X h1, h2, h3¡A¨£½Ò¥»
¤W±ªº¦¡¤lÁöµM«Ü½ÆÂø¡A¦ý¼Æ¾Ç°ÝÃD¦³¹ïºÙ©Ê®É¡A´N·|¤j´T²¤Æ¡A¦b¥¼¨Ó§A̪º½Òµ{¤¤¡A³o¼Ëªº¨Ò¤l«Ü¦h¡C
·L¤À¹Bºâªº®Ö¤ß¯S¼x
(1) ½u©Ê ¡]¹ï¨ç¼Æªº¥[¹Bºâ²Õ¦X¡^
(2) µÜ¥¬¥§¯Y«ß ¡]¹ï¨ç¼Æªº¼¹Bºâ²Õ¦X¡^
»¡©ú
·Q·Q®õ°Ç®i¶}¦¡
f(x+Δx) = Σ∞n=0 f(n)(x) (Δx)n / n!
¡A¨ä¤¤ f(n)(x) ¬O¨ç¼Æ f(x) ªº²Ä 0 ¶¥¾É¼Æ¡C
±ýªí¹F¤@Ó³sÄòÅܤƪº¨ç¼Æ¡A¥Î·L¤p¶qªº¦h¶µ¦¡¡]¾¦¸¡^¡A°t¦X¦U¶¥¾É¼Æ¡]±×²v¡^§@®i¶}¡AÁ`¬O¥i¥H °µ¨ì¡C ¦Ó¥ô¦ó·L¤Àºâ¤l¡A´N¬On¨ú¥X±×²v¡]¨ç¼ÆȪºÅܤƲv¡^¡C
²{¦b¡A¸Õ·Q¨âÓ·~¸g®õ°Ç¨ç¼Æªº¥[ªk¹Bºâ²Õ¦X¡An¨ú¨ä¤@¶¥±×²v¡A¦ÛµM¨ú±o¾¦¸¦P¬° Δx ¤§¦U¦Ûªº¤@¶¥¾É¼Æ©M¡A¬G¥ô¦ó·L¤À¹Bºâº¡¨¬½u©Ê¡C
¨ä¦¸¡A ¸Õ·Q¨âÓ·~¸g®õ°Ç¨ç¼Æªº¼ªk¹Bºâ²Õ¦X¡An¨ú¨ä¤@¶¥±×²v¡A¦ÛµM¨ú±o¾¦¸¦P¬° Δx ¤§¦U±a¦³¤@¦¸¤@¶¥¾É¼ÆªÌ¡]¨âÓ¤@¶¥¾É¼Æªº¨º¤@¶µ¡A¬O Δx2 ¶µ¡A¤Ó¤p¡^¡A¬G¥²º¡¨¬ µÜ¥¬¥§¯Y«ß¡C
§@·~¡GÃÒ©ú®õ°Ç®i¶}¦¡
°Ñ¦Ò¾\Ū
K. F. Riley and M. P. Hobson, Fundation of Mathematics : for the physical sciences, Cambridge University Press
¸Ñ»¡²M·¡¡A½d¨Ò²³¦h¡CS. S. Bayin, Essentials of Mathematical Methods in Sceince and Engineering, Wiley
ݨã±À¾É¸Ô²Ó»P¨ú§÷§¹¾ã¡AªL¶³®ü¡A°ò¦¼Æ¾Ç(²©úª©)¡A¤«n¥Xª©ªÀ
¤¤¤å¡A²LÅã©öÀ´