±è«×¡B´²«×¡B±Û«×¡B¨ä±`¥Î¤½¦¡¡B»P¥¿¥æ¡]²y¡B¬W¡^®y¼Ð¨t

 

¦V¶q·L¤À

¯Â¶q³õ·L¤À»P±è«×

·Å«×³õ¡B°ª«×¡]®ü©Þ¡^¡B®ðÀ£³õ¡]³õ¬OªÅ¶¡ªº¤À§G¡^

 

«O¦u¦V¶q³õ

W = ∫ab F · ds

«O¦u¤O§@¥\¡A¶È»Pªì¡B¥½¦ì¸m¦³Ãö¡A¦Ó»P¸ô®|µLÃö¡C§Y¤W¦¡

W = ∫ab F · ds = U(b) - U(a)

³o·N¨ýµÛ F · ds = dU¡A§Y¦s¦b ¤@ U(x1, x2, x3)¡A¨ä

dU = (∂U /∂x1) dx1 + (∂U /∂x2)  dx2 + (∂U /∂x3) dx3

= ( ∂U /∂x1 , ∂U /∂x2 , ∂U /∂x3 ) · (dx1, dx2, dx3) = (U) · dr

 

¦V¶q·L¤Àºâ¤l (Ū°µ nabla ©Î del)

≡ ( ∂/∂x1 , ∂/∂x2 , ∂/∂x3 )

 

¦V¶q³õªº¦V¶q·L¤À

´²«×

∇· A = ( ∂/∂x1 , ∂/∂x2 , ∂/∂x3 ) · (A1, A2, A3)

= ∂A1 /∂x1 + ∂A2 /∂x2 + ∂A3 /∂x3

¬O¤@­Ó¯Â¶q

 

´²«×ªº·N¸q¡G

¦pªG¤@­Ó¦V¶q³õ¬O¥Ñ¬YºØ "·½" ©Ò²£¥Íªº¡A¨º»ò³o­Ó³õ¦bªÅ¶¡³B³Bªºªº´²«×­È·|¬ðÅã¥X¸Ó "·½" ¦s¦b»P§_¡C

 

±q³sÄò¤èµ{¦¡²z¸Ñ "´²" «×

¦Û¦æ¨£½Ò¥»»¡©ú¡A·|¦Ò¡C

 

 

2

 

2 φ = 0 ¥s Laplace ¤èµ{¦¡¡A­«­n¡C

 

2 §@¥Î¦b¦V¶q³õ»P¯Â¶q³õ³£¥i¥H¡C

 

 

±Û«×

 

µ½¥Î εijk ©w¸q ³B²z¤U¦CÃÒ©ú

∇ × ∇φ = 0

 


¥Î¨ì εijk  ªº¤Ï¹ïºÙ©Ê¡A¤]´N¬O εijk  = -εikj ¡C

 

 

 

±`¥Î¤½¦¡

§@·~¡GÅçÃÒ¤W¦C¤Q¤­­Ó¤½¦¡¡C(¤½¦¡ (6) ³Ì«á¤@­Ó × À³§@ · )

´£¥Ü¡Gµ½¥Î εijk »P δij µ¥Ãö«Y¦¡

 

 

¥¿¥æ¦±½u©Ê®y¼Ð¨t

¨£½Ò¥»±À¾É¡AÃöÁä·§­z¦p¤U¡G

­º¥ý¡A¦b¤£¥¢¤@¯ë©Êªº±¡ªp¤U¡A¥ô¦ó®y¼ÐÅÜ´«Á`¬O¦s¦b·s¡B®y¼Ð¦ì¸mªº©w¸q¡G

¨£¹Ï 1.16

 

·s®y¼Ð¶bªº²£¥Í

¤W­±³o¤@²Õªº¤T­Ó¨ç¼Æ¡A·|§âÅ骺¥ô¤@ÂI¹ïÀ³¨ì¥t¤@ÂI¡A§Gº¡¤TºûªÅ¶¡¡C

³oùئpªG§Ú­Ì©T©w¦í u2, u3 ¦Ó¥uÅý u1 °Ê¡A´N¯à±½´y¥X¤@±øªÅ¶¡¦±½u¡A´N¥i¥H§â¥¦­Ìªº¤Á½u¦V¶q¡A®³¨Ó§@¬°®y¼Ð¶bªº¤è¦V¡A´N¹³©ó«e³æ¤¸±Ä¥Î³æ¤@ t ©Î©·ªø s §@¬°°Ñ¼Æ®É¡A¥i©w¸q¤Á½u¤è¦V¤Î³æ¦ì¤Á¦V¶q¨º¼Ë¡C¡]¦Ü©ó³o¼Ë°µ¥X¨Óªº®y¼Ð¶b³æ¦ì¦V¶q¡A¨Ã¤£«OÃÒ¥¿¥æ¡C¡^

 

¤p½u¬q¤¸¯ÀªºÅÜ´«

§â ∂r /∂ui ªº¤è¦V©w¬° ui^¡Aªø«× |∂r /∂ui| ©w¬° hi ¡]¤S¥s scale factor¡^¡A«h¤W¦¡¦¨¬°

§Ú­Ì²{¦b³W©w u^1, u^2, u^3 ¤¬¬°¥¿¥æ¡A²{¦b¦A¨Ó¬Ý¤pÅé¿n¤¸¯À¦p¦óÅÜ´«

 

¤pÅé¿n¤¸¯ÀªºÅÜ´«

­«ÂI¬O¡GÅÜ´«®É¡A­¼¤W Jacobian¡C

Jacobian ¤£µ¥©ó 0 ®É¡A§½³¡¦³ 1¹ï1 Âà´« ¡]³o¬O½Ò¥»´£¿ô¡^¡C

¡]¬°¤°»ò­nÁ¿³o­Ó¡H¦]¬°¥¼¨Ó·|¦³»Ý­n§â ∫ f(x,y,z) dxdydz ´«¦¨ ∫ f(u1,u2,u3) J du1du2du3 ®É¡A´N­n¦b·L¤pÅé¿n¤¸¯À¤W­¼¤W J¡C¡^

 

±è«×ºâ¤l¡B´²«×ºâ¤l¡B±Û«×ºâ¤l¡B©Ô¤R©Ô´µºâ¤lªºÅÜ´« (§Y¥¦­Ì¦b«D¥d¤ó®y¼Ð¨tªº¤½¦¡)

³q¦¡

±è«×

¥ý¬Ýµ²ªG¤½¦¡

±À¾É°_ÂI

°²³]

ª`·N fi ¤£¬O¥»¸`¤@¶}©l ½Í¨ì¤§ ®y¼ÐÅÜ´«¨ç¼Æ f, g, h ¡A¦Ó¬O¬Y¨ç¼Æ±è«×¤§¤À¶q¡C

«e¦³

¥Ñ©ó u^1, u^2, u^3 ¦Û¦¨¤@ "¥¿¥æÂk¤@" ®y¼Ð¨t (³o¬O«e´£°²³])¡A¬G¦³ ¡]¥Î¤W­± φ ªº¤½¦¡»P dr ªº¤½¦¡¡^

¦ý¤S®Ú¾Ú¥þ·L¤À¤§°ò¥»©w¸q¡A¤U¦¡¤@©w¦¨¥ß

ºî¦X«e¨â¦¡±ø¥ó¡A§Y±o

hi fi = ∂φ/∂ui¡A§Y fi = (1/hi) ∂φ/∂ui

±oÃҭ즡

¸É¥R¡Ghi ¬O¦³´X¦ó¾Ç¤Wªº·N¸qªº¡A¸Ô¨£¨ä¥L±Ð¬ì®Ñ¡C

 

´²«×¹w³Æ

·|§Q¥Î¨ìªº¨â­ÓÃö«Y

(a) ªºÃÒ©ú

§Q¥Î«e¤wÃÒ¤§ ∇φ ¤½¦¡¡A®M¥Î¦b u1 ¤W¡A ∇u1 = (1/h1) (∂u1/∂u1) u1^ + 0 + 0 = (1/h1) u1^¡A¬G ¨äªø«× | ∇u1| = 1/h1¡C

 

(b) ªºÃÒ©ú

¥Ñ (a) §Ú­Ì¦³ ∇u1 = (1/h1) u1^ ¡A∇u2 = (1/h2) u2^¡A∇u3 = (1/h3) u3^

∇u2 × ∇u3 = 1/(h2 h3) u2^ × u3^ = 1/(h2 h3) u1^

¡]¬°¤°»ò u2^ × u3^ = u1^ ¡H ¡^

¬G u1^ = h2 h3 ∇u2 × ∇u3 ¡A±oÃÒ¡C

 

´²«×

ÃÒªk

· A = · (Σi Ai ui^) = · ( A1 u1^) + · ( A2 u2^) + · ( A3 u3^) ¡]¤À°t«ß¡^

¨ä¤¤¥ý¬Ý · ( A1 u1^)

§Q¥Î«e­±ªº u1^ = h2 h3 u2 ×u3 ¡A¦³

· ( A1 u1^) = · ( A1 h2 h3 u2 × u3 )

= ( A1 h2 h3) · (u2 × u3 ) +( A1 h2 h3) · ( u2 × u3 )

¦A§Q¥Î«e­±ªº ui = (1/hi) ui^

¤W¦¡ = (1/h1) (∂ A1 h2 h3 / ∂ u1) [1/ (h2 h3)] + 0

²Ä¤G¶µ¬°¹s¬O¦]¬°¨Ï¥Î¤F"¹ï¥ô¦ó¨ç¼Æ  f, g ¡A · ( f × g ) = 0 " ³o¤@­Ó¯S©Ê¡C¡]¦P¾Ç­Ì¦Û¤v¥i§Q¥Î · ( A × B ) = ... ªº¤½¦¡ÃÒ©ú¬Ý¬Ý (¥Î«e­± 15 ±ø¤½¦¡¤§ (4) ©M (6) )¡A¤£·|°µ¥i¨£ Riley ®Ñ¡C¡^

(¥ç¥i¥Ñ u2 × u3 = (u^2/ h2) × (u^3/ h3) = u^1/ (h2h3)¡A

¡]½Ò¤å´£¨ÑªºÃÒªk¡A¸û¤£¤è«KªºÂI¤]¦b¦¹¡C¦]¬°¬J­nÃÒ©ú· ( ) ªº§Î¦¡¡A¥B©|¥¼ÃÒ¥X¡A´N¤S»Ý­n ¥Î¨ì· ( ) ªº¤½¦¡¡C¡^

¸É¥R¡G¤]¥i¨Ï¥Î · A ≡ limΔV→0 (∫CS A · ds ) / ΔV ¡A§Y·L¤pÅé¿nªº³q¶q¡]¦V¶q­±¿n¤À¡^¨Ó²z¸Ñ · (u1^) = 0   ªº²z¥Ñ¡C

«ä¦Ò¡G¬°¤°»ò ¤£¬O¥Î¦V¶q¤À¶qªºÂà´«¤½¦¡´N¦n¡A¨ä¸ÑªGÁÙ³o»ò½ÆÂø¡H §Ú­Ì§â ¼g¦¨¦V¶qªº¼Ë¤l¡A¾Þ§@³W«h¤]«Ü¹³¡A¥¦¨ì©³¬O¤£¬O¦V¶q¡A­Y¤£¬O¡A¬°¦ó»P¦V¶q¦p¦¹¬Û¹³¡H

 

¸Þ½×¦¡ªº±À¾É

· ( A1 u1^) = A1 · u1^ +   A1 · u1^

¨ä¤¤¡A²Ä¤@¶µ¤¤ªº

A1 = (1/h1) (∂A1/ ∂ u1) u1^ + (1/h2) (∂A1/ ∂ u2) u2^ + (1/h3) (∂A1/ ∂ u3) u3^

¬G

A1 · u1^  = (1/h1) (∂A1/ ∂ u1)

¥t¥~¡A²Ä¤G¶µ¤¤ªº

· u1^ = 0

ºî¦X¨â¶µ¡A

· ( A1 u1^) = (1/h1) (∂A1/ ∂ u1)

»P­è¤~¤W­±¾É¥X¨Óªº¤£¤@¼Ë¡A¨ºùب£¨ì°­¤F¡H

 

©Ô¤R©Ô´µºâ¤l

«e­±¤wª¾

²Õ¦X¨Ï¥Î¡A¥i±o

°ÝÃD¡G§Ú­Ì«ç»òª¾¹D¤W­±ªº¾Þ§@¬O¦Xªkªº¡H¯uªº¥i¥H³o¼Ë®M¥Î¶Ü¡H¬°¤°»ò¡HÃø¨ì¨S¦³¤@­Ó "¥¿²Î®y¼ÐÂà´«" ¡A©Î¬O "¼s¸q·L¤À©w¸q" ªº¤èªk¡AÅý§Ú­Ì¥i¥Hª½±µ¬Ý¨ì¤W­z¦U³q¦¡¡H

 

±Û«×

¤@¼Ë±q × A =  × (A1 u1^ + A2 u2^ + A3 u3^)  ¶}©l ¬Ý u1 ¤À¶q

× (A1 u1^) =  × ( A1 h1u1 )

= ( A1 h1) ×u1 + A1 h1 × u1 = ( A1 h1) ×u1 +  0

= ( A1 h1) × (u1^ / (h2h3))

= Σijk εijk ui^ [(∂/∂uj ) (A1 h1)] [(u1^/ (h2h3)]|k

= Σijkεijk ui^ [(∂/∂uj ) (A1 h1)] [(1/ (h2h3)]k δ1k

= Σij εij1 ui^ [(∂/∂uj ) (A1 h1)] [(1/ (h2h3)]

= εi=2,j=3,1 ui^ [(∂/∂uj ) (A1 h1)] [(1/ (h2h3)] + εi=3,j=2,1 ui^ [(∂/∂uj ) (A1 h1)] [(1/ (h2h3)]

= u2^ [(∂/∂u3 ) (A1 h1)] [1/ (h2h3)] − u3^ [(∂/∂u2 ) (A1 h1)] [1/ (h2h3)]

= [1/ (h2h3)] [ u2^ (∂/∂u3 ) (A1 h1) − u3^ (∂/∂u2 ) (A1 h1)]

 

¡]´£¿ô¡G¬Ý¨ì ×  ´N¥N¤J εijk ¡AµM«á³]ªkÅý εijk ®ø¥¢¡A¬O±`¨£ªº§@ªk¡^

 

½Ò¥»ªº§@ªk¡]­Ë¼Æ²Ä¤G¦æ¬A©·¤ºÀ³¥þ¬O A1 h1 ¤~¹ï¡^

 

ºî¦X¤T­Ó³¡¤À¡A§¹¾ãªºµ²ªG¬O¡G

¤]¥i¼g¦¨¦æ¦C¦¡§Î¦¡

 

°ÝÃD¡G§Ú­Ì«ç»òª¾¹D«e­±ªº (1) ~ (14) ¦¡¹ï¦±½u©Ê®y¼Ð¨t¤]¬O¹ïªº¡H

©Î¥ý°Ý²³æ¤@ÂI¡G§Ú­Ì«ç»òª¾¹D ¡A¨º¨Ç¤½¦¡¡A¦b¥t¤@­Ó¥d¤ó®y¼Ð¬O¹ïªº¡H

 

 

∇· v¡B× v ¡B ∇v ªº¤£ÅÜ©Ê¡]¶i¶¥¡^

¥Î±i¶qªº»y¨¥¨Ó¤F¸Ñ¡]¤£¦P®y¼Ð¤U¡A§Î¦¡¤@¼Ë¡A±i¶q´N¬O¦b´y­z³o¹³ªºªF¦è¡C¡^

¤@¥»¤£¿ùªº¤p®Ñ¡GJ. G. Simmonds, A Brief on Tensor Analysis

 

 

±`¥Î¥¿¥æ®y¼Ð¨t

¬W®y¼Ð¨t

¡]¨£½Ò¥»¹Ï 1.17¡^

x1 = ρ cosφ, x2 = ρ sinφ, x3 =z

¥»¨Ò¤¤¡A hrho = 1¡Bhphi = ρ¡Bhz = 1¡C

ÃÒ©ú¨£¤U¡G

¤èªk¤@

¥Ñ¹Ï¥i¨£

dr = dρ eρ + ρ dφ eφ + dz ez = [1] dρ eρ + [ρ] dφ eφ + [1] dz ez

ª`·N ρ dφ ªº·N«ä¡C ±oÃÒ

¤èªk¤G

¥Ñ¹Ï¥i¨£

eρ = cosφ ex + sinφ ey

eφ = - sinφ ex + cosφey

·N¿×µÛ

ex= cosφeρ- sinφ eφ

ey= sinφeρ + cosφeφ

¦¹¥~¡A±q x = ρ cosφ, y = ρ sinφ  ªº©w¸q¡A¦³

dx = cosφdρ - ρsinφ dφ

dy = sinφdρ + ρ cosφ dφ

²{¦b¡A±q dr = dx ex + dy ey + dz ez ¥Xµo¡A¤À§O¥N¤J¤W­±­è­è¾ã²z¥X¥¼ªº ex¡Beφ ¤Î dx¡Bdy¡C´N¥i¥H§â dr ¤Æ¦¨¥þ¥Ñ dρ¡Bdφ ¤Î  eρ¡B eφ ©Òºc¦¨¡C

dr = dx ex + dy ey + dz ez= (cosφdρ - ρsinφ dφ) (cosφeρ- sinφ eφ) + ( sinφdρ + ρ cosφ dφ ) (ey= sinφeρ + cosφeφ ) + dz ez

§Q¥Î cos2θ + sin2θ = 1

³Ì«á¡A±o

dr = dρ eρ + ρdφeφ + dz ez

 

 

 

¡]¹ï¦æ¦C¦¡­¼¤W¤@­Ó«Y¼Æ¡Aµ¥¦P©ó¹ï¨ä¬Y¤@¦æ©Î¤@¦C¦P­¼¸Ó«Y¼Æ¡^

 

 

 

²y®y¼Ð

¡]¨£½Ò¥»¹Ï 1.18¡^

x1 = r sinθcosφ, x2 = r sinθsinφ, x3 = r cos θ

 

¤@¼Ë¥Î ds2 ¥h¹ï¥X h1, h2, h3¡A¨£½Ò¥»

 

¤W­±ªº¦¡¤lÁöµM«Ü½ÆÂø¡A¦ý¼Æ¾Ç°ÝÃD¦³¹ïºÙ©Ê®É¡A´N·|¤j´T²¤Æ¡A¦b¥¼¨Ó§A­Ìªº½Òµ{¤¤¡A³o¼Ëªº¨Ò¤l«Ü¦h¡C

 

 

·L¤À¹Bºâªº®Ö¤ß¯S¼x

(1) ½u©Ê ¡]¹ï¨ç¼Æªº¥[¹Bºâ²Õ¦X¡^

(2) µÜ¥¬¥§¯Y«ß ¡]¹ï¨ç¼Æªº­¼¹Bºâ²Õ¦X¡^

»¡©ú

·Q·Q®õ°Ç®i¶}¦¡

f(x+Δx) = Σn=0 f(n)(x) (Δx)n / n!

¡A¨ä¤¤ f(n)(x) ¬O¨ç¼Æ f(x) ªº²Ä 0 ¶¥¾É¼Æ¡C

±ýªí¹F¤@­Ó³sÄòÅܤƪº¨ç¼Æ¡A¥Î·L¤p¶qªº¦h¶µ¦¡¡]¾­¦¸¡^¡A°t¦X¦U¶¥¾É¼Æ¡]±×²v¡^§@®i¶}¡AÁ`¬O¥i¥H °µ¨ì¡C ¦Ó¥ô¦ó·L¤Àºâ¤l¡A´N¬O­n¨ú¥X±×²v¡]¨ç¼Æ­ÈªºÅܤƲv¡^¡C

²{¦b¡A¸Õ·Q¨â­Ó·~¸g®õ°Ç¨ç¼Æªº¥[ªk¹Bºâ²Õ¦X¡A­n¨ú¨ä¤@¶¥±×²v¡A¦ÛµM¨ú±o¾­¦¸¦P¬° Δx ¤§¦U¦Ûªº¤@¶¥¾É¼Æ©M¡A¬G¥ô¦ó·L¤À¹Bºâº¡¨¬½u©Ê¡C

¨ä¦¸¡A ¸Õ·Q¨â­Ó·~¸g®õ°Ç¨ç¼Æªº­¼ªk¹Bºâ²Õ¦X¡A­n¨ú¨ä¤@¶¥±×²v¡A¦ÛµM¨ú±o¾­¦¸¦P¬° Δx ¤§¦U±a¦³¤@¦¸¤@¶¥¾É¼ÆªÌ¡]¨â­Ó¤@¶¥¾É¼Æªº¨º¤@¶µ¡A¬O Δx2 ¶µ¡A¤Ó¤p¡^¡A¬G¥²º¡¨¬ µÜ¥¬¥§¯Y«ß¡C

 

§@·~¡GÃÒ©ú®õ°Ç®i¶}¦¡

 

 

°Ñ¦Ò¾\Ū

K. F. Riley and M. P. Hobson, Fundation of Mathematics : for the physical sciences, Cambridge University Press
¸Ñ»¡²M·¡¡A½d¨Ò²³¦h¡C

S. S. Bayin, Essentials of Mathematical Methods in Sceince and Engineering, Wiley
­Ý¨ã±À¾É¸Ô²Ó»P¨ú§÷§¹¾ã¡A

ªL¶³®ü¡A°ò¦¼Æ¾Ç(²©úª©)¡A¤­«n¥Xª©ªÀ
¤¤¤å¡A²LÅã©öÀ´