±`·L¤À¤èµ{

¤@¶¥±`·L¤è

 

ª«²z©w«ß (¤×¨ä¬O¤ñ¸û¶i¶¥ªÌ) «Ü¦h¬O¥H·L¤À¤èµ{ ( ±`·L¤À¤èµ{ ¤Î °¾±`·L¤À¤èµ{) ªí¥Ü¥X¨Ó

¦Wµü¸ÑÄÀ

·L¤À¤èµ{¦¡¡G¥¼ª¾¨ç¼Æ¤¤¥H¦³·L¤À²Å¸¹¥X²{ªº

±`·L¤À¤èµ{¦¡¡G·L¤À¤èµ{¦¡¤§¥¼ª¾¨ç¼Æ¶È¦³³æ¤@¦ÛÅܼƪÌ

°¾·L¤À¤èµ{¦¡¡G·L¤À¤èµ{¦¡¤§¥¼ª¾¨ç¼Æ¦³¨â­Ó©Î¥H¤W¦ÛÅܼƪÌ

±`·L¤À¤èµ{¦¡ªº¶¥¼Æ (order)¡G³Ì°ª·L¤À¦¸¼Æ

±`·L¤À¤èµ{¦¡ªº¦¸¼Æ (degree)¡G³Ì°ª·L¤À¶µªº¦b               ¾ãÅ馡¤l¦³²z¤Æ¤§«á ªº ¾­¦¸

½u©Ê·L¤À¤èµ{¦¡¡GÀ³ÅܼƩΨä¾É¼Æ¦b¦U¶µ¥u¥X²{¤@¦¸¡A¥B¦¸¤è¬O¤@¦¸¤è¡C¡]¨£½Ò¥» p.63 ¤§¨â¨Ò¡^

½u©Êªº±¡ªp¤U¡AµLÀ³ÅܼƥX²{¤§¶µ«ê¬O¹sªÌ¡]§Y¤£§t¶È¦ÛÅܼƶµ¡^¡AºÙ(½u©Ê¡B¤@¶¥) )»ô©Ê(»ô¦¸) (homogenious)·L¤À¤èµ{¦¡¡C

µù¡G»ô©Ê¡]»ô¦¸¡^¦³¨âºØ·N¸q¡A½Ð¨£ºû°ò¦Ê¬ì

 

¹ï½u©Ê»ô¦¸ªº·L¤À¤èµ{¦¡¦Ó¨¥¡A¨â­Ó¸Ñªº½u©Ê²Õ¦X¤´¬O¸Ñ¡C¡]°ÝÃD¡G«ç»ò¬Ý¥X³o¬O¹ïªº¡H¡^

 

¨D¸Ñ

«Ü¦h¬O«ÜÃø±À¾É¨D¸Ñªº¡]»Ý¨Ï¥Î¹q¸£¼Æ­È¨D¸Ñ¡^¡C

¤@¶¥¥²¥i¸Ñ¡A¦ý¸Ñ¤§«¬¦¡¥¼¥²¬O±`¨£¨ç¼Æ¡C

©Ò¿×¸Ñ¡A¤]¥s¿n¤À (integral) ¡A´N¤£·|¦A±a¦³·L¤À²Å¸¹¤F¡C

n ¶¥°ÝÃD¤§¸Ñ¦³ n ­Ó«Ý©w(¥ô·N) ±`¼Æ¡C¡]³o»P¿n¤À¦³Ãö¡A©Î»¡·½¦Û±`¼Æ¤§¾É¼Æ¬°¹sªº¥»½è¡C¡^

 

¤@¶¥±`·L¤è¡G

dy/dx = -f(x,y)/g(x,y) 

©Î¼g¦¨

g(x,y) dy +   f(x,y) dx= 0

 

½Ò¥»°ÝÃD¡G dy/dx ¥i¥H´N³o»ò©î¶}¦¨ dy ¡Bdx ¶Ü¡Hª«²z¾Ç®a§â dx¡Bdy ·Q¦¨ δx ¡Bδy ´N¥i¥H¡C

 

¡]¥H¤U¤¶²Ð¤TºØ¤èªk¡^

 

¤ÀÂ÷ÅܼÆ

Q(y)dy + F(x)dx = 0

¤ÀÂ÷«á¨âÃä¿n¤À

¡]¤¤¶¡¥i¯à¥Î¨ìÅÜ´«Åܼơ^

 

Ex 2.1  : ¨D¸Ñ dy/dx = - y2 ex

 

Ex 2.2 : ¨D¸Ñ dy/dx = 8x + 4y + (2x + y -1)2

 

Ex 2.3 : ¨D¸Ñ dy/dx = (y2 + xy) / x2

 

Ex 2.4 : ¨D¸Ñ dy/dx = (y + x -5) / (y - 3x -1)

 

Ex 2.5 : ¨D¸Ñ    ªá¦¡¸õ³Ê  ªÌªº¸¨¤U±¡§Î¡C

 

 

¥¿¦X (exact) ¤èµ{¦¡¡]§Î¦¡¡^

·Qªk¡G¹ï¥ô¦óÂùÅܼƨç¼Æ u(x,y)¡A¦³¥þ·L¤À du = ∂u/∂x dx + ∂u/∂y dy ¤@©w¦¨¥ß¡]why¡H·Q¹³ dx »P dy ¦U¦Û¯àÅܤơA­¼¤W±×²v¡^

¦]¦¹¡A·Q§â f dx + g dy ¤@Á|¼g¦¨ du ¡A§ä u  ¨Ï±o  ∂u /∂x = f ; ∂u /∂y = g ¡C

¹ï©ó¨D¸Ñ dy/dx = -f(x,y) / g(x,y) §Y f(x,y)dx + g(x,y)dy = 0 ¡A­Yµ¥¸¹¥ª¬°¤@¥þ·L¤À du ¡A«h¥iª½±µ¿n¤À¨D¸Ñ¡A¨ä¸Ñ¬° u(x,y) = C¡C

¤]´N¬O»¡¡A­ì¦¡À³¨ã du = (∂u /∂x ) dx + (∂u /∂y ) dy ¤§§Î¦¡

³o·N¨ýµÛ¡A(∂u /∂x ) = f , (∂u /∂y ) = g

¬JµM¦p¦¹ ¡A¥²¦³ ∂f /∂y = ∂g /∂x  (  ¥Î¨ì¤F°¾·L¤À¦b¯S©w±ø¥ó¤U¥i¥æ´«¤§¯S©Ê¡^

°ÝÃD : ¬°¦ó (∂/∂x ) (∂/∂y ) f  = (∂/∂y ) (∂/∂x ) f   ?

°ÝÃD : «ç»ò¼Ëªº±ø¥ó¤U, ¤£¦PÅܼƪº°¾¾É¼Æ¥i¥H¤¬´« ? Ref  Ref2

 

¸Ñ y(x) ªºµ¦²¤²{¦bÂର¨D¸Ñ u(x,y)¡A

¸Õ°Ý¡G°£¤F du = f dx + g dy = 0 ±ø¥ó¤§¥~¡AÁÙ¦³¤°»ò±ø¥ó¥iÅý§Ú­Ì¨D u(x,y)¡H

µª®×¡G¥¿¦X±ø¥ó¦¡(²Õ)¥»¨­¡C

(∂u /∂x ) = f , (∂u /∂y ) = g

¦p¦¹¤@¨Ó¡A·|±o¨â­Ó u ªº¸Ñ¡A¤@­Ó¨Ó¦Û(∂u /∂x ) = f¡A¿n¤À±o u = ∫ f dx + c 1(y)¡A¥t¤@­Ó¨Ó¦Û(∂u /∂y ) = g¡A¿n¤À±o u = ∫ g dy + c 2(x)¡A¦ý³o¨â­Ó u ¬O¦P¤@­Ó¨ç¼Æ¡A¦A²Õ¦X§Y±o ½T©w¤§ u¡C

 

Ex 2.6 : ÀËÅç¤èµ{¦¡ xdy/dx + (x+y) = 0 ¤§¥¿¦X©Ê¨Ã¨D¸Ñ¤§

 

 

 

¿n¤À¦]¤l

¤£º¡¨¬¥¿¦X¤èµ{¦¡ªº¤@¶¥·L¤è, ÁÙ¬O¦s¦b¤@­Ó¿n¤À¦]¤l¡]¤£¬O y ªº¨ç¼Æ¡^¡A¨Ï±o­¼ ¤W¥h«á¬°¥¿¦X¡A¥u¤£¹L¬O¦¹¤@¿n¤À¦]¤l¡A¤£¤@©w®e©ö§ä¨ì¡C

¦pªG«Ý¸Ñªº·L¤À¤èµ{¦¡¬O½u©Êªº¡]ª`·N f »P g ùØÀY³£¨S¦³ y ªº¬Û¨Ì©Ê¡A§Y³£¤£¬O y ªºÅã¨ç¼Æ¡^¡A¦p

dy/dx + f(x) y + g(x) = 0

«h¥²¦³¤@¿n¤À¦]¤l¦p¤U

e f(x) dx

¨Ï¥¿¦X¤èµ{¦¡¦¨¥ß¡C¡]¥H¤UÃÒ©ú¡^

 

ÃÒ©ú I¡G°²³] R(x) ´N¬O§Ú­Ì­nªº¿n¤À¦]¤l¡A ­¼¤J­ì¦¡´N·|º¡¨¬¥¿¦X±ø¥ó¡A«h§Ú­Ì¦³¡G

R(x) [dy/dx + f(x) y - g(x)] = 0¡A§Y

R(x) dy + [R(x) f(x) y - R(x)g(x)] dx = 0 = du = (∂u / ∂y ) dy + (∂u /∂x ) dx

«h¥¿¦X±ø¥ó­n¨D ∂R(x) /∂x =  ∂[R(x) f(x) y - R(x) g(x)] /∂y

¤W¦¡ (¥¿¦X±ø¥ó¦¡) ¥k¤âÃä = R(x) f(x) ¡]¦]¬°²Ä¤G¶µ»P y µLÃö¡^¡A¦Ó¥ª¤âÃä = d R(x) / dx ¡]¦]¬°¥u»P x ¦³Ãö¡^

¬G¦³ dR(x) / dx = R(x) f(x) ⇒ dR / R  = f(x) dx ⇒ ln R =∫ f(x) dx ⇒ R = e∫ f(x) dx ¡A±oÃÒ¡C

 

ÃÒ©ú II¡G°²³] R(x) ´N¬O§Ú­Ì­nªº¿n¤À¦]¤l¡A ­¼¤J­ì¦¡´N·|º¡¨¬¥¿¦X±ø¥ó¡A«h§Ú­Ì¦³¡G

R(x) [dy/dx + f(x) y] = R(x) g(x)¡A§Y R(x) [dy + f(x) y dx] = R(x) g(x) dx¡A¥ç§Y

R(x) dy + R(x) f(x) y dx = R(x) g(x)

¦¹¦¡¤§µ¥¸¹¥kÃ䳡¤À¤w¸g¥i¿n¤À¡A¬G¶È»Ý¬Ý¥ªÃä»ô©Ê¦¡ªº³¡¤À¡C¥ªÃä­n¯à¹F¨ì¥¿¦Xªº¸Ü¡A¶·º¡¨¬

∂[R(x) f(x) y]/∂y = ∂R(x) /∂x

¤W¦¡ (¥¿¦X±ø¥ó¦¡) ¥ª¤âÃä = R(x) f(x) ¡A¦Ó¥k¤âÃä = d R(x) / dx ¡]¦]¬°¥u»P x ¦³Ãö¡^

¬G¦³ dR(x) / dx = R(x) f(x) ⇒ dR / R  = f(x) dx ⇒ ln R =∫ f(x) dx ⇒ R = e∫ f(x) dx ¡A±oÃÒ¡C

 

 

¦¹¦]¤l F ­¼¤J«á¡A¦¨¥¿¦X±ø¥ó¤§·L¤À¤èµ{¦¡¡]°O±o¡G¥Ø¼ÐÂର¨D¸Ñ u(x,y)¡^¡]¨ä¤¤ F = ∫ f(x) dx ¡^

­ì°ÝÃD¦¡ dy/dx + f(x) y = g(x)

¦¨¬° d (y eF) / dx = g(x) eF ¡]½Ð¦Û¦æÅçºâ¬Ý¬Ý d (y eF) / dx ·L¤À¥X¨Ó·|¬O¤°»ò¡A§Yª¾¬°¦ó¦¹¦¡¦¨¥ß¡^

d [y e∫f(x)dx] / dx = g(x) e∫f(x)dx

y e∫f(t)dt = ∫ g(x) e∫f(x')dx'  dx + C

y = e-∫f(x)dx [∫ g(x) e∫f(x')dx'  dx + C ]

¡]´£¿ô¡G¿n¤À¦]¤l»P g(x) µLÃö¡^

 

Ex 2.7 : ½T»{ xdy / dx + 2y + x2 = 0 ¤£º¡¨¬¥¿¦X¤èµ{¦¡ , ¨Ã§ä¤@­Ó¿n¤À¦]¤l¨Ï¤§¥¿¦X¨Ã¨D¸Ñ¡C

¡]µù¡G½Ò¥»¨Ï¥Î ¦³²z¤Æ¦¨ ¤§«á dy / dx + (2/x)y + x = 0¡A¨ú¥Î f(x) = 1/x ¬O¤£¹ïªº¡AÀ³¸Ó¿í·Ó­ì¤½¦¡¨Ï¥Î f(x) =2/x¡A±o¿n¤À¦]¤l x2 ¡A¦A­¼¦^ ¦³²z¤Æ ¤§¦¡¤l¡C½Ò¥»¨ÒÃD§@ªk¥u¬O¥©¦X¦¨¥ß¡A­YÃD¥Ø§ï¬° xdy / dx + 3y + x2 = 0 ¡A¤j®a´N·|µo²{½Ò¥»¨ÒÃD¤¤ªº§@ªk¤£¯à¾A¥Î¡C¡^

 

Ex 2.8 RL ¹q¸ô¨D ¸ÑÀH®É¶¡§ïÅܪº¹q¬y I(t)

 

 

 

¥Õ§V¤O¤èµ{¦¡¡]¿ï¡^

dy / dx + f(x)y = g(x)yn

±`¨£©óª«²z°ÝÃD¤¤¡A¬O¤@­Ó«D½u©Ê¤@¶¥·L¤À¤èµ{¦¡¡C

§Ú­Ì¥i³z¹L³] w = yα ¡A¨ä¤¤ α = 1 - n¡A¨Ï­ì¦¡¤Æ¬° "½u©Ê" ¤@¶¥±`·L¤è

dw/ dx  = (1 - n) f(x) w = (1 - n) g(x)

¤W¦¡¤§¿n¤À¦]¤l¬° eint(1-n)f(x)dx

 

 

ÀH°ó´úÅç

¤@¡B¯à¥Î¤ÀÂ÷Åܼƪk¨D¸Ñªº¤@¶¥·L¤è¦¡¡AÀ³¨ã¦³¦óºØ§Î¦¡¡H

¤G¡B²Å¦X¥¿¦X¤èµ{¦¡±ø¥óªº¤@¶¥·L¤è¦¡¡A¨ä³q¸Ñ¬°¦ó¡H