(®y¼Ð)¥¿¥æ¡B¤\¥¿¡B¬Û¦üÂà´«
¤°»ò¬O Transformation ¡H
Transformation ½Ķ§@ Âà´«¡]©ÎÅÜ´«¡^
±`«ü§â¤@ÓªF¦èÅܦ¨¥t¤@Ó¦P½èªºªF¦è
¤\¥¿¯x°}
©w¸q
Hermitian conjugate ¬° inverse ªÌºÙ¤§¡A§Y U+ = U-1 ªÌ¡AU ¬°¤@Ó¤\¥¿¯x°}¡C
¡]¥Ñ ¤@өΤ@³s¦ê¤\¥¿¯x°}©Òºc¦¨ªºÂà´«¡A¥s°µ¤\¥¿Âà´«¡C¡^
¯S©Ê
¤\¥¿Âà´«¤U¦V¶qªº norm ¡A§Y | v | ¡A¤]´N¬O "ªø«×"
¨Ò : 1/√2 [ [1, i], [i, 1] ]
¥Ñ©ó det(U+) = det (UT*) = det (U*T) = det(U*) = det (U)*
¦³ det (U+ U) = det det (U+) det(U) = det(U)* det(U) = det (I ) = 1
( ¸É¥R : a* a ±`¼g§@ | a |2 , ¦P²z v+ v = v*T v = | v |2 )
§Y det(U) = eiα ¡A¨ä¤¤ α ¬°¬Y¹ê¼Æ
«e±´£¹Lªº¥¿¥æ¯x°}¡A¬O¤\¥¿¯x°}¦b¯Â¹ê¼Æ§Îªº¯S¨Ò¡C¡]¦^¾Ð¡AOT = O-1, UT* = U-1¡^
¤\¥¿¯x°}ªº¦U¦C»P¦U¦æ¤§¶¡¡A¦³½Æ¼Æ¦V¶qªº¥¿¥æÃö«Y¦p¤U
Σk uik ujk* = δij ¡B Σk uki ukj* = δij
±ÛÂà¯x°} »P (®y¼Ð)¥¿¥æÂà´«
¦bªÅ¶¡¤¤±N¤@Óª«¥ó¥H¬YÂI¬°¤¤¤ßÂà°Ê¡]¦³§ïÅܪ«Å骺¦ì¸m¡^¡A©Î¹ï®y¼Ð¶b±ÛÂà¡A¦Ó¨Ï®y¼ÐÅÜ´«¡]¥¼§ïÅܪ«Å骺¦ì¸m¡^¡A¬Ò¥i¨Ï¥Î¯x°}¹ï¦V¶qªº¹Bºâ¨Ó¹F¦¨¡C
¥H®y¼Ð¶b±ÛÂà¡A¦Ó¨Ï®y¼ÐÅÜ´«¬°¨Ò¡A
·Qª¾¹D¦U xi »P¦U x'i ¤§¶¡ªºÃö«Y¡A
§Q¥Î¥¿¥æÃö«Y ei' · ej' = δij
¦³ x1' = r · e1'
¦P²z¼g¥X x2'¡Bx3'
¬Û·í©ó¦³ (¤U¦¡¶È±N r ¥H e °ò©³®i¶})
(¦¡ 1)
¥H¤W«Ø¥ß¤F®y¼Ð x' »P®y¼Ð x ªºÃö«Y¦¡¡A
ª`·N³oùØ λij ¬O«Ü²¼ä¦a¨Ó¦ÛÂà°Ê«e«á°ò©³¦V¶q¡]®y¼Ð¶b³æ¦ì¦V¶q¡^ªº¤º¿n¡A¦p¤U
x "±ÛÂà" ¨ì x' ªºªí¥Üªk¡A¥H ¯x°}-¦V¶q ¼¿nªí¥Üªk¦p¤U¡G
´£¿ô¡A¦pªG¬OÂÇ¥ÑÂà°Ê¦Ó§âª«Å骺®y¼Ð¶b¦ì¸m§ïÅÜ¡A
´N¬O®y¼Ð¦ì¸m¦³ÅÜ´«ªÌ¡A¤Wz¤½¦¡¤´¾A¥Î¡C
±q
¥i±o¡]¸Ô¨£½Ò¥»¡^
¥ç§Y±ÛÂà¯x°}¦æ¦V¶q¶¡¡B¦C¦V¶q¶¡ ¥¿¥æÂk¤@¡C
¯x°}ªº Trace
Tr A = Σi aii
¥iÃÒ©ú¦³Ó¯x°}¼¿n¦b cyclic permutation ¤U¨ä trace ¤£ÅÜ ¡]¨£²ßÃD¡^
¥¿¥æ»P¤\¥¿Âà´«
«e±¤¶²Ðªº½u©ÊÂà´« x' = O^ x ¡]§Y (¦¡ 1) ¡^¬O¤@ºØ¥¿¥æÂà´«
¥t¤@ºØÂà´«¤]«Ü¦³¥Î¡A¥s§@¤\¥¿Âà´«
Y = U X
Y† Y = X† U † U X = X† X
¥i¨£«O«ù norm ¤£ÅÜ
¬Û¦üÂà´«
«ä¦Ò¡G
½u©ÊÂà´«¡]¦p®y¼Ð¶b±ÛÂà¡^¤U¡A·|¨Ï
¥i¯à·Qªk¤§¤@¡G¯x°}¤£¬O¦V¶q¡A¤£¥²¿í¦u¦V¶qªº®y¼ÐÂà´«³W«h¡A¬G¤£ÅÜ°Ê¡C
¥i¯à·Qªk¤§¤G¡G§ÚÌnºû«ù¬Y¨Ç¤è«Kªº¼Æ¾Ç³W«hÄ~Äò¥i¥H¨Ï¥Î¡A¦]¦¹¯x°}¤]n¸òµÛÂà´«¡C
°ÝÃD¡G¤°»ò¬O¨ºÓ§ÚÌ·QÄ~Äò«O¦³ªº¯x°}³W«h¡H
¥|¨B¤À¬q·Qªk¡G
(1) ³Q¯x°}§@¥Î¹L«áªº¦V¶q v ¥»½è¤W§Y·|¬O¥t¤@Ó¦V¶q u¡]§Y u = Mv¡^¦Ó«D¯Â¶qµ¥«D¦V¶qª«¥ó¡C v ¸g¾ú¤F¦p®y¼Ð±ÛÂà¯ëªº½u©ÊÂà´«¡A
(2) ¬JµM (¦p®y¼Ð±ÛÂà¯ëªº) ½u©ÊÂà´« §â v Âà¨ì v'¡]Ãö«Y¦¡ v' = S v¡^¡A´N¤]·|§â u Âà¨ì u' ¡]Ãö«Y¦¡ u' = S u¡^
(3) «e¤vª¾¡Aì®y¼Ð¨t¤º¡]§Y¥¼Âà´«¤U¡^u = M v
(4) §Ú̦۵M¬O¹w´Á u' = M' v'¡A¨ä¤¤ v' = S v ¥B u' = S u'
¨º»ò¡An«ç¼Ë§â M ÅÜ´«¦Ü M' ¤~¯à«OÃÒ u' ªº½T¬O u' = S u ©O¡H
µª®×´N¬O¡A¨C·í¦V¶q³Q¼¤W¯x°} S §@ÅÜ´«¡A¯x°} M ´Nn§ï³y¦¨ M' = S M S-1
¦p¦¹ªº½T«OÃÒ u' ¬O¦P¤@ÓªF¦è ¡A³oºØ¹ï M ªºÂà´« S M S-1¡A¥s°µ "¬Û¦üÂà´«"¡C
¡]°ÝÃD¡G¨ºìÅÜ´«¯x°} S ·|¤£·|³Q¦Û¤v¼vÅT¨ì¡A´N¤£¦A¬O S ¦Ó¤©¬Þ¤F¡Hµª®×¬O¤£·|¡A¦]¬° S S S-1 = S ¤´µM¤@¼Ë¡A¬GµL¤©¬Þ¡C¡^
¯S©Ê¡G¦b¬Û¦üÂà´«¤U¡A¯x°}-¦V¶q ¼¿nÃö«Y¦¡¤£ÅÜ¡C
ÃÒ©ú¡G A R = B r Ãö«Y¦¡¦b¬Û¦üÂà´«¤U¤£ÅÜ¡C
¡]¸Ô¨£½Ò¥» p.123¡^
A' = SAS-1¡BR' = SR¡AB' = S B S-1¡Br' = S r
±o A' R' = B' r'
§Î¦¡¤£ÅܱoÃÒ
«n¡G¬Û¦üÂà´«¤]¦]¦¹·|«O¦u¥»¼xÈ¡]§Y Ax = λx ªº°ÝÃD¡A¨£¤U¸`¡^¡A°ò©ó¦¹¤@¯S©Ê¡A¥¦¦b§ä¤@²Õ·s°ò©³¡A¦Ó±N¯x°}¨¤¤Æªº¹Lµ{¤¤¡A·|«Ü¦³¥Î¡C