(®y¼Ð)¥¿¥æ¡B¤\¥¿¡B¬Û¦üÂà´«

 

¤°»ò¬O Transformation ¡H

Transformation ½Ķ§@ Âà´«¡]©ÎÅÜ´«¡^

±`«ü§â¤@­ÓªF¦èÅܦ¨¥t¤@­Ó¦P½èªºªF¦è

 

 

¤\¥¿¯x°}

©w¸q

Hermitian conjugate ¬° inverse ªÌºÙ¤§¡A§Y U+ = U-1 ªÌ¡AU ¬°¤@­Ó¤\¥¿¯x°}¡C

¡]¥Ñ ¤@­Ó©Î¤@³s¦ê¤\¥¿¯x°}©Òºc¦¨ªºÂà´«¡A¥s°µ¤\¥¿Âà´«¡C¡^

 

¯S©Ê

¤\¥¿Âà´«¤U¦V¶qªº norm ¡A§Y | v | ¡A¤]´N¬O "ªø«×"

¨Ò : 1/√2 [ [1, i], [i, 1] ]

 

¥Ñ©ó det(U+) = det (UT*) = det (U*T) = det(U*) = det (U)*

¦³ det (U+ U) = det det (U+) det(U) = det(U)* det(U) = det (I ) = 1

( ¸É¥R : a* a ±`¼g§@ | a |2 , ¦P²z v+ v = v*T v  = | v |2 )

§Y det(U) = e ¡A¨ä¤¤ α ¬°¬Y¹ê¼Æ

 

«e­±´£¹Lªº¥¿¥æ¯x°}¡A¬O¤\¥¿¯x°}¦b¯Â¹ê¼Æ§Îªº¯S¨Ò¡C¡]¦^¾Ð¡AOT = O-1, UT* = U-1¡^

 

¤\¥¿¯x°}ªº¦U¦C»P¦U¦æ¤§¶¡¡A¦³½Æ¼Æ¦V¶qªº¥¿¥æÃö«Y¦p¤U

Σk uik ujk* = δij ¡B Σk uki ukj* = δij

 

 

±ÛÂà¯x°} »P (®y¼Ð)¥¿¥æÂà´«

¦bªÅ¶¡¤¤±N¤@­Óª«¥ó¥H¬YÂI¬°¤¤¤ßÂà°Ê¡]¦³§ïÅܪ«Å骺¦ì¸m¡^¡A©Î¹ï®y¼Ð¶b±ÛÂà¡A¦Ó¨Ï®y¼ÐÅÜ´«¡]¥¼§ïÅܪ«Å骺¦ì¸m¡^¡A¬Ò¥i¨Ï¥Î¯x°}¹ï¦V¶qªº¹Bºâ¨Ó¹F¦¨¡C

¥H®y¼Ð¶b±ÛÂà¡A¦Ó¨Ï®y¼ÐÅÜ´«¬°¨Ò¡A

·Qª¾¹D¦U xi »P¦U x'i ¤§¶¡ªºÃö«Y¡A

§Q¥Î¥¿¥æÃö«Y ei' · ej' = δij

¦³ x1' =  r · e1'

¦P²z¼g¥X x2'¡Bx3'

¬Û·í©ó¦³ (¤U¦¡¶È±N r ¥H e °ò©³®i¶})

 (¦¡ 1)

¥H¤W«Ø¥ß¤F®y¼Ð x' »P®y¼Ð x ªºÃö«Y¦¡¡A

ª`·N³oùØ λij ¬O«Ü²¼ä¦a¨Ó¦ÛÂà°Ê«e«á°ò©³¦V¶q¡]®y¼Ð¶b³æ¦ì¦V¶q¡^ªº¤º¿n¡A¦p¤U

x "±ÛÂà" ¨ì x' ªºªí¥Üªk¡A¥H ¯x°}-¦V¶q ­¼¿nªí¥Üªk¦p¤U¡G

 

´£¿ô¡A¦pªG¬OÂÇ¥ÑÂà°Ê¦Ó§âª«Å骺®y¼Ð¶b¦ì¸m§ïÅÜ¡A

´N¬O®y¼Ð¦ì¸m¦³ÅÜ´«ªÌ¡A¤W­z¤½¦¡¤´¾A¥Î¡C

 

±q

¥i±o¡]¸Ô¨£½Ò¥»¡^

¥ç§Y±ÛÂà¯x°}¦æ¦V¶q¶¡¡B¦C¦V¶q¶¡ ¥¿¥æÂk¤@¡C

 

 

¯x°}ªº Trace

Tr A = Σi aii

¥iÃÒ©ú¦³­­­Ó¯x°}­¼¿n¦b cyclic permutation ¤U¨ä trace ¤£ÅÜ ¡]¨£²ßÃD¡^

 

 

¥¿¥æ»P¤\¥¿Âà´«

«e­±¤¶²Ðªº½u©ÊÂà´« x' = O^ x ¡]§Y (¦¡ 1) ¡^¬O¤@ºØ¥¿¥æÂà´«

¥t¤@ºØÂà´«¤]«Ü¦³¥Î¡A¥s§@¤\¥¿Âà´«

Y = U X

Y Y = X U U X = X X

¥i¨£«O«ù norm ¤£ÅÜ

 

 

¬Û¦üÂà´«

«ä¦Ò¡G

½u©ÊÂà´«¡]¦p®y¼Ð¶b±ÛÂà¡^¤U¡A·|¨Ï

¥i¯à·Qªk¤§¤@¡G¯x°}¤£¬O¦V¶q¡A¤£¥²¿í¦u¦V¶qªº®y¼ÐÂà´«³W«h¡A¬G¤£ÅÜ°Ê¡C

¥i¯à·Qªk¤§¤G¡G§Ú­Ì­nºû«ù¬Y¨Ç¤è«Kªº¼Æ¾Ç³W«hÄ~Äò¥i¥H¨Ï¥Î¡A¦]¦¹¯x°}¤]­n¸òµÛÂà´«¡C

 

°ÝÃD¡G¤°»ò¬O¨º­Ó§Ú­Ì·QÄ~Äò«O¦³ªº¯x°}³W«h¡H

¥|¨B¤À¬q·Qªk¡G

(1) ³Q¯x°}§@¥Î¹L«áªº¦V¶q v ¥»½è¤W§Y·|¬O¥t¤@­Ó¦V¶q u¡]§Y u = Mv¡^¦Ó«D¯Â¶qµ¥«D¦V¶qª«¥ó¡C v ¸g¾ú¤F¦p®y¼Ð±ÛÂà¯ëªº½u©ÊÂà´«¡A

(2) ¬JµM (¦p®y¼Ð±ÛÂà¯ëªº) ½u©ÊÂà´« §â v Âà¨ì v'¡]Ãö«Y¦¡ v' = S v¡^¡A´N¤]·|§â u Âà¨ì u' ¡]Ãö«Y¦¡ u' = S u¡^

(3) «e¤vª¾¡A­ì®y¼Ð¨t¤º¡]§Y¥¼Âà´«¤U¡^u = M v

(4) §Ú­Ì¦ÛµM¬O¹w´Á u' = M' v'¡A¨ä¤¤ v' = S v ¥B u' = S u'

 

¨º»ò¡A­n«ç¼Ë§â M ÅÜ´«¦Ü M' ¤~¯à«OÃÒ u' ªº½T¬O u' = S u ©O¡H

µª®×´N¬O¡A¨C·í¦V¶q³Q­¼¤W¯x°} S §@ÅÜ´«¡A¯x°} M ´N­n§ï³y¦¨ M' = S M S-1

¦p¦¹ªº½T«OÃÒ u' ¬O¦P¤@­ÓªF¦è ¡A³oºØ¹ï M ªºÂà´« S M S-1¡A¥s°µ "¬Û¦üÂà´«"¡C

 

¡]°ÝÃD¡G¨º­ìÅÜ´«¯x°} S  ·|¤£·|³Q¦Û¤v¼vÅT¨ì¡A´N¤£¦A¬O S ¦Ó¤©¬Þ¤F¡Hµª®×¬O¤£·|¡A¦]¬° S S S-1 = S ¤´µM¤@¼Ë¡A¬GµL¤©¬Þ¡C¡^

 

 

¯S©Ê¡G¦b¬Û¦üÂà´«¤U¡A¯x°}-¦V¶q ­¼¿nÃö«Y¦¡¤£ÅÜ¡C

ÃÒ©ú¡G A R = B r Ãö«Y¦¡¦b¬Û¦üÂà´«¤U¤£ÅÜ¡C

¡]¸Ô¨£½Ò¥» p.123¡^

A' = SAS-1¡BR' = SR¡AB' = S B S-1¡Br' = S r

±o A' R' = B' r'

§Î¦¡¤£ÅܱoÃÒ

 

­«­n¡G¬Û¦üÂà´«¤]¦]¦¹·|«O¦u¥»¼x­È¡]§Y Ax = λx ªº°ÝÃD¡A¨£¤U¸`¡^¡A°ò©ó¦¹¤@¯S©Ê¡A¥¦¦b§ä¤@²Õ·s°ò©³¡A¦Ó±N¯x°}¨¤¤Æªº¹Lµ{¤¤¡A·|«Ü¦³¥Î¡C