²z·Q®ðÅé
²z·Q®ðÅ骺¸gÅ礽¦¡
ªi¥H¦Õ©w«ß
©w·Å¤U
p1 V1 = p2 V2
¬dº¸´µ©w«ß
V1 / T1 = V2 / T2
¨ä¤¤ T ¬Oµ´¹ï·Å«×
»\¡V¸ôÂħJ©w«ß
p1 / T1 = p2 / T2
¨ä¤¤ T ¬Oµ´¹ï·Å«×
¨È¦ò¥[³Ö©w«ß
¦P·Å¦PÀ£¤U
V1 / n1 = V2 / n2
¤]´N¬O»¡
V / n = ±`¼Æ
¨È¦ò¥[³Ö¼Æ
NA = 6.022 x 10^23
²z·Q®ðÅé¤èµ{¦¡¡]Bauer-Westfall ½Ò¥»¬O¥H "©w«ß" ªº¨¤«×¨Ó«Ø¥ß¡^
P V = n R T
«e´£°²³]¬O¡A¥u»P®e¾¹¾À¸I¼²¡]¤]´N¬O¤À¤lµLÅé¿n¡B¤§¶¡¤]µL¥æ¤¬§@¥Î¤O¡^¡C
±À¾É¤è¦¡¡G
¥Ñ«e±ªº´XÓ©w«ß²Õ¦X°_¨Ó¡]¨£½Ò¥» ±À¾É 19.1¡^
½d¨Ò¡G¥H²GºA´á§N«o®ð²y¡]Fig.19.8¡^
«í·Å¤Uªº²z·Q®ðÅé§@¥\
W = ∫ p dV = (n R T) ∫ (1/V) dV = r R T [ln V] = nRT ln {Vf/Vi}
Dalton ¤ÀÀ£©w«ß
¤£¦P¤À¤l¦@¦Pºc¦¨ªº®ðÅé¡A¨äÁ`®ðÀ£¬O¦U¤ÀÀ£¤§©M
ptotal = Σin= 1 pi
¥u»P²ö¦Õ¤À²v¡]§Y¤À¤l¼Æ¥Ø¡^¦³Ãö¡A¤]´N¬O»¡
pi = ri p¡A¨ä¤¤ ri = ni / n
¯à¶q§¡¤Àì²z¡]½Ò¥»¬O¡A¯à¶q§¡¤À©w²z¡^
±À¾É¡G¡]·LÆ[¡^®ðÅé¤À¤l¹B°Ê»P¡]¥¨Æ[¡^À£¤OªºÃö«Y
L ¬°Ãäªø¥ß¤è®e¿n¤º¡A¤À¤l¹ï¤@Ó±©Ò³y¦¨¼²À»ªº°Ê¶q§ïÅܬO
Δpx = (-m vx) - (m vx) = - 2 m vx
¦]¦¹¤À¤l¹ï®e¾¹¾À©Ò³y¦¨ªº¤O¡A¨C¦¸¼²À»¬O 2 m vx
µM¦Ó¡A¨C³æ¦ìªº¶¡¤º¦³¦h¤Ö¦¸¼²À»©O¡H
®e¾¹ªø¬O L¡A¥H vx ªº¸¦æ³t«×¡A°²³] Δt ¬O¨C¸I¤@¦¸¦P¤@±ªº¾¹¾À©Ò»Ýªº®É¶¡¡]¸I¨ì¥t¤@±ªº¤£ºâ¡^¡A«h¦¹ Δt ¬O 2L / vx
¤]´N¬O»¡¡A¨C Δt ªº®É¶¡¤º¡A¦³ 2 m vx ªº°Ê¶q§ïÅÜ
§Q¥Î F = m a = m dv /dt = d (mv) /dt = dp / dt
F = dp / dt = Δpx / Δt = 2 m vx / (2L / vx) = m vx2 / L
¨ä¥L©Ò¦³¤À¤l³£ºâ¶i¥h
p = Fx / L2 = (1/L2) Σ i=1N Fxi = (1/L3) m Σi=1N vxi2 = (m/ L3) <vx2>avg
<vx2>avg = Σi=1N vxi2
¹ï¥ô¦ó¤À¤l¡Av2 = vx2 + vy2 + vz2
¬G <vx2>avg = (1/3) <v2>avg
©w¸q vrms ≡ √<v2>avg ¥s°µ§¡¤è®Ú³t²v (root-mean-squire velocity)
Á`¤À¤l¼Æ¬O N = n NA ¡]¨ä¤¤ NA ¬O¨È¦ò¥[³Ö±`¼Æ¡^
p = (mn NA / 3V ) vrms2 = n (m NA) vrms2 / 3V = n M vrms2 / 3V
¦]¦¹¡A«Ø¥ß¤FÀ£¤O»P§¡¤è®Ú³t²v¤§¶¡ªºÃö«Y
p = n M vrms2 / 3V
¦pªG§â²z·Q®ðÅé¤èµ{¦¡·í§@¤vª¾¡A¥N¤J p V = n R T ¡A«h±o vrms = √(3 R T / M)
pV = W = 3/2 n R T = 3/2 n NA k T = n NA <KE>avg
<K.E>avg = 3/2 k T
¡]¸É¥R¡^¯à¶q§¡¤Àì²z
¨C¤@ӦۥѫפÀ¨ì (1/2) k T ªº¥§¡°Ê¯à¡C¤]´N¬O»¡¦b¥¿Å¤U¡A¨CÓ¤À¤l¦³ (3/2) kTªº°Ê¯à¡C
«e¦³ p = (m n NA / 3V ) vrms2 ¡A¬G pV = (1/3) n NA 2 (1/2 m vrms2) = (2/3) n NA [3/2 kT] = n (NAk) T = n R T
¤]´N¬O»¡¡A®M¥Î ¯à¶q§¡¤Àì²z ´N¥i¥H¾É¥X ²z·Q®ðÅé¤èµ{¦¡
±q¥t¤@Ó¨¤«×¨Ó¬Ý¡Ap V = n R T ¥þ¬O¥Ñ¥¨Æ[¶q©Ò²Õ¦¨¡A¬O¥i³z¹L¹êÅç¨ÓÅçÃÒªº¡C
²z·Q®ðÅé¤ñ¼ö
³æì¤l®ðÅé
Eint = N Kavg = N 3/2 kB T
©w®e¤ñ¼ö
¦p¦ó±o©w®e¤ñ¼ö¡H
¨Ì©w¸q Q = n CV ΔT
ΔEint = Q - W = Q -p dV = Q - 0 = Q = n CV ΔT
¥Ñ¤W¦¡ ΔEint = 3/2 N kB ΔT = 3/2 n R ΔT
¬G CV = (3/2) R
¹ï²z·Q®ðÅé
Eint = n CV T
·N«ü ²z·Q®ðÅé ¤º¯à¥u»P n¡BCV¡BT ¦³Ãö
©wÀ£¤ñ¼ö
¦p¦ó±o©wÀ£¤ñ¼ö¡H
¦A¦¸¨Ì©w¸q Q = n Cp ΔT ¡]©wÀ£¤U¡^
¥Ñ¼ö¤O¾Ç²Ä¤@©w«ß ΔEint = Q - W = Q - p ΔV
±N¤W¤W¦¡ Q = n Cp ΔT ¥N¤J¨Ã®M¥Î«e¤w¨î©w¤§²z·Q®ðÅé Eint = n CV T
ΔEint = Q - p ΔV = > n CV T = n Cp ΔT - p ΔV
¨Ï¥Î ²z·Q®ðÅé ¤èµ{¦¡ p ΔV = nR ΔT ¡]©wÀ£¤U¡^
n CV T = n Cp ΔT - n R ΔT
¥i±o
CV = Cp - R
§Y
Cp = CV + R
©wÀ£©w®e¤ñ¼ö¤§¤ñ²v
γ ≡ Cp / CV
¦Û¥Ñ«×
®Ú¾Ú¯à¶q§¡¤Àì²z¡A¨C¤@Ӧۥѫצ³ 1/2 kB T ªº¯à¶q
¬G
Eint = 3 Df n RT / 2
CV = 3 Df RT / 2
Cp «h¤@¼Ë¬O Cp = CV + R
¬G¤ñ²v¡G
5/3 , 7/5, 9/7 ...
»P¹êÅ礣¦Pªº±¡ªp¡A¨Ó¦Û¶q¤l®ÄÀ³ªº®t²§¡An¦³¨¬°÷¯à¶q¡A¤~¯à¿Eµo¸ÓÂà°Ê»P®¶°Êªº¦Û¥Ñ«×¡]®¶°Êªº¯à¶qªùÂe¤×¨än°ª¤@¨Ç¡^¡C
½Ò¥»ªº°Q½×ªk¡A¬O¥u¦Ò¼{²¾°Ê»PÂà°Ê¡A¦Ó§â®¶°Ê·í§@ÃB¥~ªº¦Ò¶q¡C¦¹¤@§@ªk¡A»P§â¯à¶q§¡¤À¤£¬Ý§@¬Oì²zªº§@ªk¬O¬Û¤¬À³ªº¡A¤]´N¬O»¡¡A¥u¦b²z·Q®ðÅ骺¼h¯Å¤U«Ø¥ß¯à¶q§¡¤À¡]¨Æ¹ê¤W¡A½Ò¤å¤¤¤]¨Ï¥Î¤Fì²z³o¼Ë¬ù¦WºÙ¨Ó½á¤©¨CÓ¦h¥X¨Óªº¦Û¥Ñ«× 1/2 kB T ªº¥§¡¯à¶q¡^
¦]¦¹¡A½Ò¥»¹ï¦hì¤l¤À¤l®ðÅ骺°Q½×¤èªk¦p¤U¡G
¦³§¹¾ãªº¤TÓ¤è¦Vªº¹B°Ê¡A¥H¤Î¤TÓ¶bªºÂà°Ê¡A¦@¤»Ó "¦Û¥Ñ«×"¡A¦]¦¹¡ACV = 6/2 R = 3 R¡Aγ = 4/3
²z·Q®ðÅ骺µ´¼ö¹Lµ{
©Ò¿×ªºµ´¼ö¹Lµ{´N¬O Q = 0¡A¬G ΔEint = -W¡AY¨t²Î¬O²z·Q®ðÅé¡A«h¹Lµ{¤¤
p Vγ = ±`¼Æ
¨ä¤¤ γ ≡ Cp / CV
ÃÒ©ú±À¾É½Ð¨£½Ò¥» ±À¾É 19.3
¤W±¤½¦¡¤£n¸ò pV = nRT ²V²c¦b¤@°_¡C
±À¾ÉÁöµM¦³ÂI½ÆÂøªº¡A¦ý¥»¦¡¤¹³\§Ú̦b¤£ª¾¹D¡]©Î¤£¥ÎºÞ¡^·Å«×ªº¸ê°T¤U¡A´x´¤²z·Q®ðÅé§@¥\®É¨äÀ£¤O»PÅé¿nªºÅܤơA³o¬O«Ü¦³¥Îªº¡C
§Ú̬°¤°»ònÃö¤ß " ²z·Q®ðÅé" ªº "µ´¼ö¹Lµ{"¡H
³o¬O¦]¬°¤ÞÀº¬O®ðÅé¦b°µ¥\¡A¦Ó¥¦¹B§@±o«Ü§Öªº®É«J/³¡¥÷¶¥¬q¡A¥iµø¬°µ´¼ö¹Lµ{¡C¡]¤£n»~¸Ñ³oùØ¥²¶·©¿²¤¼o¼öªº°ÝÃD¡A¼o®ðªº±Æ¼ön¤ñ¤ÞÀºªº±Æ¼ö¦h¡C¡^
¦b«Ø¥ß¤F
p Vγ = ±`¼Æ
«á¡A¥N¤J p V = n R T ¥h¥i¸m´«¥X V¡BT Ãö«Y
p Vγ = ±`¼Æ = p Vγ = (p V) Vγ-1 = n R T Vγ-1
§Y
T Vγ-1 = ±`¼Æ
¡]¤W¦¡¥i¥H¸ÑÄÀ§NÂ꺺һĶ¼®Æ¶¡²~«á¡A²~¤f·|¾®µ²¨Ã¦³Ãú®ð¡C¡^
¨ÒÃD SP 19.1¡G¸}½ñ¨®L¥´®ð¤@¤U°Ýª@·Å
®ðÅé°Ê¤O½×
Maxwell-Bolzman ³t²v¤À§G
H2 ¬°¦ó¦b¤j®ð¤¤³o»ò¤Ö¡H¡]«e±«¤O±i¸`¦³¡A¦aªíªþªñªº²æÂ÷³t²v¬O¬í³t 11 ¤½¨½¥ª¥k¡C¡^
¤j®ð¼h¦³¤@¼h¡]100 ¤½¨½¥H¤W¡^¨ä·Å«×¥i°ª¹F 1500 «×¡A¥s thermosphere ¡A¦Ó²B¤ñ¨ä¥L¤j®ð¦¨¥÷§ó©öÄƦV°ª³B¡C¦]¦¹²B·|¶]±¼¡A´á¤£·|¡C
Maxwell-Bolzman °Ê¯à¤À§G
¹ï©ó N2 ¦b¤£¦P·Å«×¤Uªº¤À§G¡A¨ú¹ï¼Æ®y¼Ðªºµ²ªG¡Cª`·N³o¼Ëªº¨úªk¥i¥H¨ó§U§Ú̱o¨ì«ü¼Æ³¡¤À¡A¦]¦¹¦b¥»¨Ò¤¤¡A¹Ïªº±×²v´N·|¬O¦ÛÅܼƪº«Y¼Æ¡C
§Ú̦]¦¹ª¾¹D¡A®ðÅ骺°Ê¯à¦±½u¥i¥H®³¨Ó§@¬°·Å«×ªº«ü¼Ð¡C¡]¦b¦¹Áö¨Ã¥¼¦Ò¼{¬Û¹ïºú®ÄÀ³¡A¥H³Ì§Öªº²B®ð¦b 1500 K®É¡A³t«×³Ì§Ö¤]¤~¨C¬í 15 ¤½¨½¡A¨£¤W¤W¹Ï¡C³o¤~¬Û·í©ó¨C¬í 30 ¸U¤½¨½¥ú³t¤§ 0.005% ¡C¥t¥~¡A²z·Q®ðÅé©Ò§@¤§¤À¤l¶¡¤£¥æ¤¬§@¥Îªºªñ¦ü¡A¦b¦Ò¼{¤j®ð¤]¬O¦X²z¡C¬G«Ü¦h¤j®ð¼h©Ê½è¥i¥ÎMaxwell ªº¤À§G¨Ó¤F¸Ñ¡C¡^
¨ÒÃD¡G¦j§J¡V½¦¤l ¹q¼ßªº·Å«×¡]¹Ï 19.21¡^
¤Ó¶§¤¤¤ß·Å«× 1.5 × 107 K ¡A·N¨ýµÛ¥§¡°Ê¯à 2 k eV ¡]¥Î 3/2 kB T ¥hºâ¡^¥ª¥k¡A¦ý½è¤l®Ö¿Ä¦X©Òn§JªAªº¹q¦ì¯à¬ùn 1MeV ¡A¦]¦¹¥u¦³³t²v¤À§G§À³¡¬ù°ª³t¡B°ª°Ê¯à½è¤l¯à«P¦¨¤ÏÀ³¡C¡]¨Æ¹ê¤W¡A«B¤ô§Î¦¨¤]¬O¦p¦¹¡A¤£¬O¾aªmÄË¡A¦Ó¬O¤Ö³¡¤À°ª³t¤ô¤À¤l¡C¡^
¥§¡¦Û¥Ñ¸ô®|
®ðÅ餤¨CÓ¤À¤l³£¤£Â_ªº¸I¼²¦Ó§ïÅܤè¦V¡AÂX´²¬ÛÃö©Ê½è»P¤@Ó¤À¤l "¥§¡ª½¨«¦h»·¬O«á¤~³Q¼²¨ì" ¦³Ãö¡C
¥§¡¦Û¥Ñ¸ô®| λ »P±K«× N/V ¦³Ãö¡AN/V ¶V¤j λ ¶V¤p¡F¥t¥~¡A¤À¤lºI±¿n¶V¤j¡A λ ¤]¶V¤p¡C
±À¾ÉªºÆ[©À¦p¤U¡A
³æ¦ì®É¶¡¥Î¶Õ¤O½d³ò±½¥XªºÅé¿n¡A®³¥¦¸¦æªºªø«×°£¥HÀ³¸Ón¸¨¦b¸ÓÅé¿n¤ºªº¤À¤l¼Æ¡A§Y¬°¥i¦Û¥Ñ¸¦æ¦Ó¤£¸I¼²ªº¶ZÂ÷¡C
¥Ñ©ó¤À¤l¬O¦b°Ê¦Ó«DÀR¤î¡A¬Û¹ï³t«× v;rel = √2 vavg n¥Î¤W¡]¦p¦óÃÒ©ú³o¤@¼hÃö«Y¡H¡^
λ= 1/ [ √2 (4πr 2) N/V ]
©Î¦A®M¥Î²z·Q®ðÅé¤èµ{¦¡
λ= kBT/ [ √2 (4πr 2) p ]
§@·~¡G¤W¦¡ªºÃÒ©ú¡]¸Ô¨£½Ò¥»¡^
¶i¶¥«ä¦Ò¡G¦pªG§Ú̥γt²v¤À§G¨Ó§óÄY±K¦apºâ¥§¡¦Û¥Ñ¸ô®|¡A¨äµ²ªG·|¤£·|ÁÙ¬O¤@¼Ë¡H
¨ÒÃD 19.6 ¡GªÅ®ð¤À¤lªº¥§¡¦Û¥Ñ¸ô®|