·R¦]´µ©Z¤èµ{¦¡¶W²¤¶
¶ZÂ÷ªº©w¸q
¶ZÂ÷¡A¬O "¨âÂI¤§¶¡ªºªø«×"¡A¦Ó¦¹ªø«×¬O¤@Ó¹ê¼Æ¡C
¶ZÂ÷ªºpºâ¤èªk
ª½±µ¶q
¥Ñ¨âÂI¤À¶q®t¡A§Q¥Î²¦¤ó©w²z
Δs2 = Δx2 + Δy2 + Δz2
¡] ©Îªí¥Ü¬° Δs2 = Δx12 + Δx22 + Δx32 ¡^
¥i©w¸q ¶ZÂ÷¨ç¼Æ d(x, y) = [ (y1-x1)2 + (y2-x2)2 + (y3-x3)2 ](1/2) ¡]²¦¤ó©w²z¡^
¸É¥R¡G
¦³¤F¶ZÂ÷ªºÆ[©À¡A¥i¥H¤À»·ªñ¡C§Y°Ï¤À¨º¤@¨ÇÂI¦b¬YÓÂIªº®ÇÃä¡A¨º¤@¨Ç¤£¬O¡C¯à©w¸q¾Fªñ(neighborhood)¡A´N¯à©w¸q¶}¶°¦X»P©Ý¼³¡A§ÚÌ´N¦³Æ[©À¤Wªº¤u¨ã¥i¥H´yzªF¦è¤jP̧ÎÅéºc³y¡]¦p¦³¬}ªº»P¨S¦³¬}¬O¤£¦Pªº¡^¡A§Y¤£¤@©w¦³©T©w§ÎÅ骺¡C
¦t©z¥¿¿±µÈ¤¤ªº·N²[¡G¥H«e¨âÂI¤§¶¡¶ZÂ÷¸ûªñ¡A«á¨ÓÅÜ»·¤F¡C
¶ZÂ÷ªº©w¸qªº±À¼s
¶ZÂ÷À³¦³ªº©Ê½è
d(x, x) = 0¡G¤@ÓÂI¨ì¦Û¤vªº¶ZÂ÷¬°¹s
d(x, y) > 0¡Gif x, y ¤£¦PÂI¡A¤j©ó¹s
d(x,z) < d(x,y) + d(y,z) ¡G¤T¨¤¤£µ¥¦¡¡]¨âÃäªø¤§©M¤j©ó²Ä¤TÃä¡^
º¡¨¬¤Wz±ø¥óªº©w¸q
¶ZÂ÷¨ç¼Æ d(x, y) = [ (y2-x2)2 + (y1-x1)2 ](1/2)
¥t¤@Ó¶ZÂ÷¨ç¼Æ d'(x, y) = [ 4(y2-x2)2 + (y1-x1)2 ](1/2)
¤S¥t¤@Ó¶ZÂ÷¨ç¼Æ d''(x, y) = max (| y2-x2|, | y1-x1| )
ds2 = Σij gij dxi dxj
³o¬O¦b±i¶q¡]´X¦ó¡^ªº»y¨¥¤¤¡A©w¸q½u¬qªø«×ªº¤è¦¡
³æ¦ì¦V¶q»P´ú«×¤§¶¡ªºÃö«Y
gij = ei · ej
¨ä¤¤
ei ≡ ∂/∂xi
±i¶q»P®y¼ÐÅܤƪº¤£ÅÜ©Ê
¦V¶q¡B¦V¶q¤À¶q¡Bºâ¤l»P°ò©³ªº§Î¦¡
®y¼ÐÅÜ´«
»Ýº¡¨¬¤°»ò±ø¥ó¡H
¦V¶qªº¤À¶qÈ·|§ïÅÜ
ª«²z¶q¤£ÅÜ
³s¡]ª«²z©w«ß¤¤±`¥Îªº¡^¦V¶q·L¤Àªººâ¤l¡A¤]§Æ±æ§Î¦¡¤£ÅÜ
n¦p¦ó°µ¨ì¡H
ª«²z¶q¥Ñ¡]¦V¶q©Î±i¶qªº¡^¤À¶q»P°ò©³¦V¶q©Ò¦@¦P²Õ¦¨¡A¨è·N¨ú¦¨·f°tªº¨óÅÜ»P¤Ï¨óÅܱi¶q¡A¨Ò¦p v = vi ei ©Î A = Aij ei ej¡]¦b¦¹¤w¨Ï¥Î summenstion convention¡A§Y¦¨¹ï¥X²{ªº¬Û¦P«ü¼Ð¦Û°Êµø¬°n§@ Σ i=1. . . N ¥[Á`¡^¡A¦p¦¹¤@¨Ó¤£ºÞ°Ñ¦Ò®y¼Ð¨t²Î¦p¦ó§ó§ï¡A³£¦Û°Ê«OÃÒ©Ò²Õ¦X¦¨ªºª«²z¶q ¤£ÀH®y¼ÐÅÜ´«¦Ó¤£¦P¡C
¦Ü©ó·L¤Àºâ¤l¡A«h¦Ò¼{¤£¦P¦ì¸mÂI¤W¦p¦ó"¥²¾"¤@Ó¦V¶qªº³W«h¡C±q¥t¤@Ó¨¤«×»¡¡A¬O¤@Ó¦V¶q³Q·L¤À®É¡A°£¤F¤À¶q³Q·L¤À¥~¡A°ò©³¤]¦³ÅܤƤWªº®ÄÀ³¡C
¦n³B
ª«²z¶q¤Î·L¤À¹Bºâ¦³¤£ÅÜ©Ê¡]¥ô¦ó®y¼Ð¨t´¶¹M¾A¥Î¡^¡A¤~¯àÅý¥H¼Æ¾Ç¦¡ªí²{ªºª«²z©w«ß¦³¤£ÅÜ©Ê ¡]¥ô¦ó®y¼Ð¨t´¶¹M¾A¥Î¡^
§Q¥ÎªÅ¶¡¦Û¤wªº¦ÛµM°Ñ¼Æ§@®y¼Ð¨t²Î
§½³¡®y¼Ð¨t
¨óÅܱi¶q»P¤Ï¨óÅܱi¶q
°ò©³ªº¿ï¥Î
¥Î¤Á½u§@°ò©³ªº¥²n©Ê
¦ÛµMªº°ò©³¦V¶q¡G¤Á½u¦V¶q
¨óÅܱi¶q»P¤Ï¨óÅܱi¶qªº¤¬´«¡G³z¹L´ú«×±i¶q
¨óÅÜ·L¤À
¨ó¦PÅÜ¡H«ç»òÅÜ¡H
Γij k ªº¯S¼g
±q¦ó¦Ó¨Ó¡H¦³¦ó§@¥Î¡H
¨ç¼Æªº¤Á½u¦V¶q¦bÅs¦±ªÅ¶¡ ·|¦³ "°ò©³¦V¶qªº§ïÅÜ" ¤§®ÄÀ³
¨ç¼Æªº¤Á½u¦V¶q¦b¥©ZªÅ¶¡ ¤£·|¦³ °ò©³¦V¶qªº§ïÅÜ ¤§®ÄÀ³
¤Á½u¦V¶q´O¤J¦b°ªºû«×ªÅ¶¡¤~¯à¬Ý¥X¦³¨S¦³§ïÅܤè¦V
¸É¥R¡G¦±±¤W¡A¨âÂI¶¡³Ìµu½uªº¦±½u¤S¥s´ú¦a½u (geodesic line)¡Cªk¤è¦V¤W§ë¼v§eª½½u¡A²Å¦X¨âÂI¤§¶¡³Ìµu¶ZÂ÷ªº½u¬Oª½½u¡C
³Ñ¤UªºÆ[©À°ÝÃD¬O¡A¦p¦ó´£¨ú¥X¡]½u¡B±¡BÅ骺¡^ "¦±²v" ¦Ó½T©wªÅ¶¡Ås¦±ªºµ{«×¡C³o¦b·L¤À´X¦ó¾Ç»P¾¤°Ò´X¦ó¾Ç¤¤·|¦³¨t²Î¤Æªº«Ø¥ß¡C
¦^¾Ð«e±´X¦ó³æ¤¸¡A¦±²v¶V¤j¡A³æ¦ì©·ªøÅܰʪº¤Á½u§ïÅܶV¤j¡C
Γij k ªº©w¸q
°ò©³¦V¶qÀHµÛ®y¼Ð°Ñ¼Æ¤§ÅܤƦÓÅܤƪº±¡§Î¡G
[∂/∂xj ] ei = Γki j ek
®Ú¾Ú Γij k ªº©w¸q¡A
Γij k ªº«n©Ê
Aij; k = [∂/∂xk + Γij k ] Aij
¤W¦¡ªº¸àÄÀ¡G¡]²Ä¤@¶µ¡^¨ç¼Æ¥»¨ÀH°Ñ¼ÆÅܤơB¥[¤W¡]²Ä¤G¶µ¡^¦]°ò©³¤Þ°_ªºÅܤơC
¦³¤F¥¦¡A¤~¥i©w¸q²Å¦X±i¶q¤§ÅÜ´«¦æ¬°ªº·L¤À¡A¥s¨óÅÜ·L¤À¡C¦p¤W¡A¯à§â·L¤Àªº§@¥Î "V;k"¼g¦¨¬°«ü¼Ðªº¤@³¡¤À¡A·N¨ýªÌ·L¤À¹L«á¤§µ²ªG¤]¬O¤@Ó±i¶q¡C
¹ê¨Ò¡G±è«×¡B´²«×¡B±Û«×ºâ¤l
¥|ºû®ÉªÅ¡]¯U¸q¬Û¹ï½×ªº¥[¤J¡^
³ÒÛ´þÂà´«
ù°¨¦r«ü¼Ð»P§Æþ¦r«ü¼Ð
¦±²v
¦±½u -> ¦±± -> Ås¦±ªÅ¶¡¡A ³£¥i¥H©w "¦±²v" ¡]¤Á½u¤è¦VªºÅܤƲv¡A¦]¦¹n¥Î¨ì·L¤À¡^
¡]¼Æ¾Çªº«Â¤O¡G¼Ò¦¡¡D±À¼s¡^¡]·R¦]´µ©Z»Ýnªº¡A¾¤°Ò¤w¸g·Ç³Æ¦n¡^
«Ý¸É¡G¤Gºû¦±±¤Wªº¦±²v¦p¦ó«Ø¥ß¡B¤Tºû¦±±ªº¦±²v¦p¦ó«Ø¥ß¡C
´ú«×±i¶qªºÅs¦±¡A´N¬OªÅ¶¡ªºÅs¦±
Ås¦±ªºµ{«×¡A
Richi
Geometrically, the Ricci curvature is the mathematical object that controls the growth rate of the volume of metric balls in a manifold.
Y¥H´ú¦a½u°µ¬°°Ñ¼Æ¡A«h´ú«×±i¶q·|¦³Â²³æªºªñ¦ü¤U§Î¦¡¡D´ú«×±i¶q¥H®õ°Ç®i¶}¦Ü²Ä¤@¶µ±o
gij = δij + O(|x|2)
¥H®õ°Ç®i¶}¦Ü²Ä¤G¶µ¡A«h¥X²{ Ricci ¦±²v±i¶q :
gij = δij + (1/3) Rijkl xkxl + O(|x|3)
(®y¼Ð¨t)¹B°Ê³y¦¨¤§¥[³t«×»P«¤O³y¦¨¤§¥[³t«×ªºµ¥®Ä©Ê
®Ö¤ßÆ[©À¡G
«¤O³y¦¨ªº¥[³t«×»P¹B°Ê³y¦¨ªº¥[³t«×¡A¨ä¥»½è¤W¡]Æ[¹î¤W¡^¤£¥i°Ï¤À¡A¦pªG¬O³o¼Ëªº¸Ü¡A«¤Oªº®ÄªG¹ïÀ³¨ì«ç»ò¼Ëªº¹B°Ê¡H
«¤Oªº·s¹Ï¹³¡GºD©Êª½½u¹B°Ê¡]¥»¨ÓµL¤@ª«¡A¦ó³B·S¹Ð®J¡^
«¤O³y¦¨ªº¥[³t«×¤£¬O¥~¤O±À°Ê¦³½è¶qªºª«Åé¡A¦Ó¬OªÅ¶¡Ås¦±¡A¹B°Êy¸ñ¬O«h¬O¸ÓªÅ¶¡ºD©Ê¹B°Ê©Ò¸Ó¦³ªºª½½u¹B°Ê¡C
·s·Qªkªºµ²ªG¡G
´Nºâ¬O¨S¦³½è¶qªº¥ú¤l¡A¤]¯à³Q½è¶qÅé§ïÅܸô®|¡C³o´N¶W¶V¤F¤û¹yªº¶W¶Z©Êªº¸U¦³¤Þ¤O¡A¨Ã¥B¯d¤U¤F¹êÅç¥i¥HÅçÃÒªº¾÷·|¡C
¦±²v±i¶q«Ý¿ï
·R¦]´µ©Z¿ï¥X¨Óªº¦±²v±i¶q
±¡ªp¤§¤@¡GªÅ¶¡Ås¦±¥u¦bª«½è¦s¦b¡]¦û¦³ªÅ¶¡¤§³B¡^¡A¦Ó«D¥]§tªþªñ¡]±Æ°£¡^
±¡ªp¤§¥t¤@¡G
®ÉªÅ¤èµ{¦¡
Rmn = (4πG/c4) ( 2Tmn - Tδmn )
Gμν = k Tμν
¨ä¤¤¡@Gμν = Rμν - 1/2gμν R
³oùØÀY§t¦³´ú«×±i¶q g μν ªº·L¤À¤Î²Õ¦X¡A¨äÁ`ªº¼Æ¾Ç·N¸q¬O¦±²v¡C
·R¦]´µ©Z»¡¡Aµ¥¸¹¥ª®Ç¬O¥ú·Æ¡Bºë½o¡B°í©T¡B¬üÄRªº¤j²z¥Û¡]´X¦ó¡^¡B¥kÃä¬O²ÊÁW¡B¯Ü®z¡B«÷´êªº¤ìÀY¡]½è¶q¡B¯à¶q¡B°Ê¶q¡BÀ³¤O¡^¡A¥L¦Û¤v³ßÅw¥ªÃ䪺³¡¤À¡C
Gμν - Λ gμν= k Tμν¡] Λ ¦t©z±`¼Æ: ·R¦]´µ©Z¦ÛºÙ¨ä¤@¥Í¤¤³Ì¤jªº¿ù»~¡^
¡]µo²{¦t©zªº¿±µÈ¬O¥[³t¤¤¤§«á¡A¦³¤H°Ý¡GÃø¨ì·R¦]´µ©Z²×¨sÁÙ¬O¹ï¤F¶Ü¡H¡^
¤£¦P¼Æ¾Ç±ø¥ó¤UªºªÅ¶¡´X¦óµ²ºc
¦V¶qªÅ¶¡
ªÅ¶¡ÂI¥i½á¤©¦V¶q©ó¨ä¤W¡A¥i¹ï¦s¯Â¶q¡B¦V¶q¡B±i¶q¶i¦æ®y¼ÐÂà´«
¥é®gªÅ¶¡
¤Þ¤J Γijk ¡A¥i©w°ò©³¦V¶q¸ó¤£¦PªÅ¶¡ÂI¤§ÅܤƫߡA¥i§@¨óÅÜ·L¤À¡C¡]¦b¦¹¤w¥i±o¼s¸qªº±×²v¡^
´ú«×ªÅ¶¡
¤Þ¤J´ú«× gμν¡A¥i©w¦V¶qªø«×
¾¤°ÒªÅ¶¡
n¨D "¦V¶q" ¦bªÅ¶¡¤¤³Q "¥¦æ²¾°Ê" ®É¡A¨äªø«×¤£ÅÜ