·L¿n¤À I
·L¿n¤À¡]¾ú¥v¤Á¤J¡^
³Ì¦³QºÙ¬°¬O "¬y¶q" ªº¼Æ¾Ç¡C¥Ñ^°êªº¤û¹y»P¼w°êªºµÜ¥¬¥§¯Y¦b¤T¦Ê¦h¦~«e©Ò¦U¦Û´£¥X¡C
¤û¹yÅé·|¨ì¨D¤Á½u¡B¨D³t«×¡B¨D·¥È ¡B¬Æ¦Ü¬O¨D±¿n¡A³£¥X²{
( f(x+h) - f(x) ) / h
³o¼Ëªº«¬¦¡¡A·Q§â¥¦¾ã²z¦¨¤½¦¡¡A¥H«á¥Î°_¨Ó§ó¥[¤è«K¡C
¤Á½u¡G±q¹Ï§Îª½±µÅé·|
³t«×¡GY§â¦ì¸m·í§@®É¶¡ªº¨ç¼Æ¡A«h¦p¦ó¨DÀþ¶¡³t«×¡H
·¥È¡Gªø«× a ªº½u¬q¤À¦¨¨â¬q§@¬°¯x§Îªº¨âÃä¡A¦p¦ó¤Á¤~¨Ï¯x§Î³Ì¤j¡HFermat ªº·Qªk¡A³Ì¤j®É¡Aµy¬°Åܰʤ@¤U¡A¨äȤ£ÅÜ¡C¨ãÅé§@ªk¬O¡G°²³] f(x) ªº·¥È¥X²{¦b x0¡A«h ³] f(x0) = f(x0+h)¡A¤Æ²¦¹¦¡¡A¨Ã§â§t h ªº¶µ¥á±¼¡A¥i±o x0¡C
±¿n¡G¥H y = xp ¬°¨Ò¡C
µù¡G«Ü¦nªº°Ñ¦Ò®Ñ¡G±d©ú©÷¡A·L¿n¤À¤Jªù
¬°¤°»ò»Ýn δ - ε ¤è¦¡ªº©w¸q¡H
n½Í³sÄò»P·¥¡A³£»ÝnÁ¿¨ì¨ç¼Æ¦b·¥¾Fªñ©w¸q°ìªºÈ¡C
«D±` "±µªñ"¡A¥Nªí«Ü¤p«Ü¤pªº¶¡¹j¡AµM¦Ó¡A¤°»ò¥s§@¤p¡H³Ì¤p¯à¦³¦h¤p¡H¬O "µL¤p" ¶Ü¡H
¥Ñ©ó§Ú̵Lªk³B²zµL¤p¡A¦]¦¹n°jÁרϥΥ¦¡A¦Ó¥²¶·±Ä¥Î¤U± δ - ε ªº©w¸q¤è¦¡¡C
ÄYÂÔ°ò¥»©w¸q
·¥
³sÄò
¾É¼Æ
«D¼Ð·Ç¤ÀªR
¡]¤¹³\µL¤p¦s¦bªº¼Æ¾ÇÅé¨t¡^
http://zh.wikipedia.org/zh-tw/«D¼Ð·Ç¤ÀªR
®õ°Ç®i¶}¦¡»Pªñ¦ü
¤½¦¡
http://mathworld.wolfram.com/TaylorSeries.html
¥t¤@ºØ±`¨£ªº®i¶}ªí¥Üªk¡G
ÃÒ©ú
°²³] f(x) = A + B (x-a) + C (x-a)2 + D (x-a)3 + E (x-a)4 + ..... , ·L¤À¤@¦¸±o¡]³oùئ³§Q¥Î¨ì d/dx xn = n xn-1¡AÃÒ©ú¦p¤U¡^
f'(x) = B + 2 C (x-a) + 3 D (x-a)2 + 4 E (x-a)3 + ...
f''(x) = 2 C + 2*3 D (x-a) + 3*4 E (x-a)2 + ...
:
©ó¤W¦C«íµ¥¦¡²Õ¥þ¥N¤J x = a¡A«h :
f(a) = A
f'(a) = B
f''(a) = C / 2
:
±oÃÒ¡C
ªñ¦ü
·í | x-a | < 1 ®É (x - a)n ¶V¤p¡A °ª¦¸¶µ¥i©¿²¤
¥H¦³ªº®õ°Ç®i¶}¶µ¼Æ¨Óªñ¦ü¤@¨Ç¨ç¼Æªº¹Ï¨Ò
http://yll.loxa.edu.tw/0_gsp/taylor/taylor.htm
¦^®a°Ê¤â°µ
sin(x) ªº®õ°Ç®i¶}§@¹Ï¡]¥Î fortran µ{¦¡¤Î pgplot ø¹Ï¡^
«n°ò¥»¨ç¼Æªº·L¤À
¾¨ç¼Æ©Î¾ã¼Æ¾¨ç¼Æ
d/dx xn = n xn-1
ÃÒ©ú¡G¥Î°ò¥»©w¸q d/dx xn = limx->0 (1/Δx) . [ (x+Δx)n - xn ] ¡A¨ä¤¤ (x+Δx)n ¥H¦h¶µ¦¡®i¶}¡A¬° xn + nxn-1Δx + O(Δ2)¡A¬G
즡 = limx->0 (1/ Δ x) . [ nxn-1Δx + O(Δ2) ] = limx->0 [ nxn-1 + O(Δ) ] = nxn-1 ¡A±oÃÒ¡C
«ü¼Æ¨ç¼Æ
d/dx ex = ex
ÃÒ©ú¡G º¥ý¥H¯Å¼Æ®i¶} ex = ∑n=0∞ xn/n! ¡]³o¬O¤@Óȱo°O¦íªº ex ªº©w¸q¡A³s x ¬O¤@Ó¯x°}®É³£·|¹ï¡^
³v¶µ·L¤À¤§ ∑n=0∞n xn-1/n! = ∑n=1∞ xn-1/(n-1)! ¡Aµo²{줽¦¡¤£ÅÜ¡]¥un«©w m = n-1¡^¡A±oÃÒ¡C
Euler ³Ì³ßÅwªº¤½¦¡
eiπ - 1 = 0
³o±ø¤½¦¡ùئ³ π¡B e¡Bi¡B¼ªk³æ¦ì¤¸¯À 1¡A¥H¤Î¥[ªk³æ¦ì¤¸¯À 0¡C
eix = cos x + i sin x
³o¬O¦³¦Wªº Euler ¤½¦¡ (¦è¤¸1748¦~) ¦p¦óµo²{ªº¥i¯à¹Lµ{
http://en.wikipedia.org/wiki/Euler%27s_formula
¾ú¥v¤Wµo®iªº¶¶§Ç¡A¬O¥ý¦³·L¿n¤À«á¤~¦³³oÓ¤½¦¡¡C§Ú̳oùØ©Ò´£¨Ñªº»¡©ú¡A¬O¬°¤FÀ°§U¤j®a®e©öÅçÃÒ³o¨Ç°ò¥»¨ç¼Æ·L¤Àªºµ²ªG¡CEuler ©Ò©w¸qªº«ü¼Æ»P¹ï¼Æ¬O·¥ªº¤è¦¡¡G
¤T¨¤¨ç¼Æ
§Q¥Î sin x = (eix - e-ix) / 2i ¤Î cos x = (eix + e-ix) / 2 ªºÃö«Y¡A¥i±oª¾
d/dx sin x = cos x
d/dx cos x = sin x
¹ï¼Æ¨ç¼Æ
d/dx ln x = 1/x
d/dx ln f(x) = f'(x)/f(x)
§ó¦hªº¨Ò¤l¥i¨£ http://www.amath.nchu.edu.tw/~tdoc/4_4.htm
·L¤À¹Bºâ
¨ç¼Æ¼¿nªº·L¤À¡AµÜ¥¬¥§¯÷«ß
d/dx [f(x)g(x)] = f'(x)g(x) + f(x)g'(x)
¥i¥H²³æ¦a¥Ñ°ò¥»©w¸qÃÒ©ú¡C
¦X¦¨¨ç¼Æªº·L¤À¡AÃìÂê«ß (Chain Rule)
¦X¦¨¨ç¼Æ f(g(x)) = f¡Cg(x)
f¡Cg' (x) = f'(g(x)) g'(x)
±Ð¹q¸£°µ·L¤À¡]¨D¨ç¼Æ±×²v¡^
±Ð¹q¸£°µ¿n¤À¡]¨D¹Ï½u¤U±¿n¡^
±q¤@ºûªÅ¶¡¡B¤GºûªÅ¶¡¡A¨ì¤TºûªÅ¶¡¡]¦V¶q·L¿n¤À¡^
±è«×
´²«×
±Û«×
®æªL©w²z
¤èµ{¦¡»P·L¤À¤èµ{¦¡
¦ó¿×¤èµ{¦¡¡]equation¡^
¤S¥sµ¥¦¡
¤£¦P©ó¥t¤@Óµü «íµ¥¦¡ (Identities)
¦ó¿×·L¤À¤èµ{¦¡¡]differential equation¡^
±Ð¹q¸£¸Ñ·L¤À¤èµ{¦¡¡]¶ø¥ì°Çºtºâªk¤Î¤@¨Ç°ª¶¥ºtºâªk¡^
·L¤À¤èµ{¦¡»Pª«²z©w«ß
§Ú̾Ǫ«²zªº¥Øªº¡]¸Ñ¨M¯u¹ê¥@¬É¤¤ªº°ÝÃD¡B¹w´ú¦ÛµM»P¦t©z¸Uª«ªº²{¶H¡^
¤û¹yªº¹B°Ê¤èµ{¦¡
ªi°Ê¤èµ{¦¡
¬yÅé¤O¾Çªº§B§V¤O¤èµ{¦¡
¹qºÏ¾Çªº°¨§J´µ«Âº¸¤èµ{¦¡
Á§¤B®æ¤èµ{¦¡
}©Ô§J¤èµ{¦¡
·R¦]´µ©Zªº®ÉªÅ»P½è¶q¤èµ{¦¡