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We use ab initio pseudopotential electronic-structure methods to describe successfully both the de-
tailed static structures and the structural transformation in B,O; crystals. Employing a reduced cell
volume, with full relaxation of all internal coordinates, our calculations model the structural transforma-
tion from the polymorph containing the BO; triangular unit into that containing the BO, tetrahedral
unit. In order to interpret the mechanism, individual energy contributions to the total energy are ana-

lyzed.

I. INTRODUCTION

B,0; is an interesting material, showing two po-
lymorphs in which the boron atoms have different coordi-
nation numbers (see Figs. 1 and 2). Neither form of crys-
talline trioxide occurs naturally. Furthermore, it is not
easy even under special conditions to prepare crystals and
measure their properties. In such cases computer simula-
tions can play an important role in determining the
structural and physical properties. Advances in the tech-
niques of electronic-structure calculations make it possi-
ble to calculate total energies with high accuracy. These
computer simulation techniques are currently used to

FIG. 1. The B,0;-I structure (Ref. 15).

0163-1829/95/51(3)/1447(9)/$06.00 51

study not only static but also dynamical structures in
both the crystalline and amorphous states, although there
are still considerable limitations on the size of a system
that can be studied (in particular, the number of indepen-
dent atoms in the unit cell) because of the constraints im-
posed by computer resources.

In a companion study' of B,0; and borates using
periodic ab initio Hartree-Fock techniques, we provide a
consistent interpretation of the structure and bonding of
borates which accords well with empirical concepts re-
garding the structure and bonding in these crystals.
However, these methods were unable to study fully re-
laxed structures in detail, as automatic relaxation of cell
dimensions or internal coordinates is not available in the
present version of the periodic ab initio Hartree-Fock
program (CRYSTAL92).

In this paper we discuss how the structures and bulk

FIG. 2. The B,0;-1II structure (Ref. 16).
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moduli of B,O; crystals have been determined employing
the local-density formalism (LDF) electronic-structure
methods rather than Hartree-Fock techniques. Our stud-
ies used the code CASTEP,> which performs total-energy
pseudopotential calculation. CASTEP has two distinctive
features: first, the internal coordinates can be automati-
cally relaxed so that the structure with the minimum to-
tal energy is obtained; second, it has the option of ab ini-
tio molecular-dynamics simulation,? although this was
not employed in the present case.

The next section examines the theoretical techniques
in more detail and explains the contrast between the
theoretical approaches adopted in this paper compared
with the quantum-chemical, Hartree-Fock methods. We
then apply the LDF technique to optimize the lattice pa-
rameters and internal coordinates of B,O;. After the opti-
mized structures of both phases have been identified, the
total energies of several points with different cell volumes
were calculated and bulk moduli were estimated. Finally,
we use the results of these calculations to provide the first
suggestion of a mechanism for the structural transforma-
tion between B,0; polymorphs.

II. THEORETICAL METHOD

CASTEP is a powerful code for calculating the
quantum-mechanical total energy of a structure and then
minimizing it with respect to its electronic and nuclear
coordinates. When compared with the Hartree-Fock
based quantum-chemical methods, there are three dis-
tinctly different approaches involved in the techniques
used by CASTEP:

(i) Density-functional theory* and the local-density ap-
proximation (LDA) (Ref. 5) are employed to model the
electron-electron interactions. The difference in formu-
lation between Hartree-Fock (HF) theory and density
functional theory (DFT) can be summarized as follows:®
DFT,

E=E[p,R], (1)
E=T[p]t+Ulp]+E.[p], @)
p(r=3_.|¥,(r?*, 3)
dE /3p=0, @)
[— 172V 4+ V. (r) 4+, (r) ]V, =€V, . (5
HF,
E=E[V,R], (6)
E= [W*[Sh,+3,, 1/r, ¥, @)
W=|W(1),¥(2),...,¥n)], (8)
OE /3¥ =0, ©)
[— 172V 4V (r)+ul(r ]V, =€V, , (10)

where E is total energy, ¥ is wave function, p is electron
density, R or r is coordinate for nucleus or electron, # is
the Hamiltonian, T is kinetic energy, U is electrostatic or
Coulomb energy term, u,. or u, is a many-body term or

exchange term, and ¢ is the eigenvalue.

The biggest difference between the two theories is in
the term u,. or u,. In HF theory the exchange term pu,
only describes exchange effects and is calculated from all
the wave functions based on the orbitals

,u;(r)=—2j8(a,-,aj)
RGO HG SV I HON AT %
X
WH(r)W,(r)

(11)

where o is the spin.

On the other hand, in DFT theory u,. contains all the
many-body effects and it is calculated from the total elec-
tron density

Ly (r)=8E  [p]/dp(r) . (12)
Further, LDA provides a good approximation,
E, [pl= [p(relp(rdr , (13)

where €, [p] is the exchange-correlation energy per elec-
tron in an interacting electron system of constant density
p, and

B =8 [p(MN]+p(N(BE, [p(M]/dp(r)} . (14)

This approximation is generally known to yield only a
small percentage error both in the total energy and in the
structural parameters. However, cohesive energies can
be in error by more than 10%.

(ii) Pseudopotential theory”® is used to model the
electron-ion interactions. The strong electron-nuclear
potential is replaced by a much weaker pseudopotential,
and plane waves are used as basis functions to model the
electron density outside the core region. This pseudopo-
tential technique makes the solution of Schrddinger’s
equations much simpler. The important point is that the
selection of the pseudopotential is as crucial as the selec-
tion of the basis set in the quantum-chemical calculation.
Lin et al.’ have developed an efficient and general pro-
cedure to generate optimized and transferable nonlocal
separable ab initio pseudopotentials. Another point is
that the cutoff energy, i.e., the number of plane waves,
has to be so large that the total energy is converged. For
oxides a larger number of plane waves are necessary than
for semiconductors, to express the more complex
charge-density distribution.

(iii) The counterpart to the self-consistent field method
in the quantum-chemical terms is the use of the
conjugate-gradients technique, i.e., iterative diagonaliza-
tion approaches,>!°712 are employed to relax the elec-
tronic coordinates. This provides an efficient method to
minimize the Kohn-Sham energy functional for large sys-
tems and it is applicable to oxide materials.

III. STRUCTURAL SIMULATION
FROM FIRST PRINCIPLES

A. Selection of model

The pseudopotentials for boron and oxygen were gen-
erated using Lin’s scheme.’ For both crystal structures
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TABLE I. Relation between cell volume and calculated total
energy in B,0O;-I and B,0;-11.

B,0;-1
(v /)72 Total energy (eV/B,03)
1.005 —1442.840
1.0 —1442.892
0.995 —1442.925
0.990 —1442.964
0.985 —1442.969
0.980 —1442.977
0.975 —1442.953
(v /vy)'? Total energy (eV/B,0;)
1.0 —1443.124
0.99 —1443.221
0.98 —1443.254
0.975 —1443.258
0.97 —1443.237

of B,0;, the same cutoff energy of 500 eV for the plane-
wave basis set was used to achieve a reasonable conver-
gence of the total energy. The number of plane waves
used was 3459 for the B,O,-I system (15 atoms ) and 1890
for B,0;-II (10 atoms).

The other important factor is the k-point sampling.
The Bloch theorem changes the problem of calculating
an infinite number of electronic wave functions to calcu-
lating a finite number of electronic wave functions at an
infinite number of k points. However, it is possible to
represent the electronic wave functions over a region of k
space by the wave functions at a single k point. Several
methods'>'* have been devised for obtaining an accurate
approximation for the total energy with a very small
number of k points. Generally speaking, the denser the
set of k points sampled, the more accurate is the result.
However, both the unit cells for B,0; crystals are too
large for the calculation with multi k points. Therefore,
several single k points were investigated, and among
them the single k point, which gives the smallest cell
stress and internal force, was selected. The resulting k
point was (§, 1, §) for B,Os-I and (4, 1, 1) for B,O;-II.
This difference results from the difference in crystal sym-
metry between the two polymorphs.!>16

B. Optimization of structure

First, the relation between cell volume and total energy
was calculated under the condition that the internal coor-

dinates remained fixed (Table I). When the optimized
structure (i.e., the structure with minimum total energy)
is compared with experiment, the error in the lattice con-
stant is —2.0% for B,0;-I and —2.5% for B,05-II. The
error in volume is converted into —5.9% for B,0;-1 and
—7.3% for B,O5-II. This result is satisfactory, consider-
ing that a common pseudopotential set for boron and ox-
ygen was used for both polymorphs, and only one k point
was sampled.

Second, internal coordinates were relaxed, with the
constraint that the optimized cell parameters remain
fixed. The initial and final (optimized) total energies,
bond lengths, and angles are shown in Tables II and III.

Regarding the relative stability of the two polymorphs,
the total energy of B,O;-II is lower than that of B,O;-1,
regardless of whether the internal coordinates are re-
laxed. Periodic Hartree-Fock calculations employing
the CRYSTAL code also show the same result.! However,
the phase diagram of the B,0O, system!’ suggests that
B,0;-1 is more stable than B,O;-II under ambient condi-
tions. More sophisticated calculations may be required
in order to reproduce the small difference in total energy
in either method. Thus Nada et al.!® showed that to
reproduce correctly the relative energies of quartz and
stishovite it was necessary to use high-quality basis sets in
their CRYSTAL calculations. CASTEP calculations may
need a more dense set of k point sampling to give the
correct order of energies for the two phases of B,0;. We
should also point out that the relative energies of the two
phases are unknown and that the difference in free energy
may include a large contribution from entropic factors.

When the calculated bond lengths and bond angles are
compared with the experimental values, the errors in the
bond lengths and bond angles are within 0.055 A and
3.5°. Both calculated structures reproduce the corre-
sponding experimental structures well. It is interesting to
note the change of the B(1)-O(1) bond length in B,O;-II.
In the CRYSTAL calculations the B(1)-O(1) bond is
elongated by 10% with the constraint that all the other
atomic positions are fixed. On the other hand, the B(1)-
O(1) bond is shortened by 4% in the same manner as the
other B-O bonds when all the atomic positioned are re-
laxed. Therefore, the full relaxation of internal coordi-
nates is almost certainly important for discussing the de-
tailed structure.

C. Estimation of bulk modulus

An estimate of the bulk modulus was obtained using
the total-energy calculation technique. The procedure
used was based on Murnaghan’s equation.!” Several

TABLE II. Comparison of total energies between initial structures and final optimized structures in

B,0;-I and B,0-I1.

El (eV/B,0;) E2(eV/B,03) E2-El (eV/B,0;)
before relaxation after relaxation difference
B,0;-1 —1442.977 —1443.059 —0.082
B,0;-11 —1443.258 —1443.358 —0.100
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TABLE III. Comparison of bond lengths and angles between experimental structures and final opti-

mized structures in B,0;-I and B,0;-I1.

. B,O,-I B,O,-II
Distances (A) Experiment?® Calculation Experiment® Calculation
B(D-0O(1) 1.404 1.354 B(1)-0(1) 1.373 1.358

-0(2) 1.366 1.329 -0(2) 1.507 1.461
-0(3) 1.336 1.338 -0(2") 1.506 1.451
B(2)-0(1) 1.336 1.329 -0(2") 1.512 1.507
-0(2") 1.400 1.355 O(1)-0(2) 2.364 2.313
-0(3") 1.384 1.337 -0(2) 2.440 2.365
O(1)-0(2) 2.387 2.327 -0(2") 2.409 2.408
2.388 2.329 0(2)-0(2") 2.428 2.366
0(2)-0(3) 2.409 2.331 -0(2") 2.394 2.351
2.333 2.284 0(2)-0(2") 2.389 2.350
0(3)-0(1) 2.309 2.285
2.409 2.343
Angles (deg)

0O-B(1)-O 119.0 120.3 0-B(1)-0 110.2 110.2

114.7 116.2 115.8 114.6

126.2 122.8 113.1 113.7

0-B(2)-O 121.5 120.4 107.4 108.7

124.6 123.0 104.9 104.3

113.9 116.1 104.7 104.7

B-O(1)-B 130.5 131.2 B-O(1)-B 138.6 135.1

128.3 131.2 -0(2)- 123.8 121.2

133.3 133.5 -0(2")- 114.7 115.7

—0Q")- 118.9 118.9

*Reference 15.
"Reference 16.

values for the total energy as a function of cell volume
were fitted using least-square techniques to Murnaghan’s
equation;

E (V) =B,V /By'[(Vo/V)® /(By'—1)+1]+const ,
(15)

where B, and B’ are the bulk modulus and its pressure
derivative at the equilibrium volume V; both B, and B’
were fitted.

As each calculation of ionic relaxation requires a large
amount of CPU time, only six points were calculated for

both polymorphs. The cell volume was isotropically
varied and then internal coordinates relaxed in each case.
The relation between the cell volumes and the corre-
sponding total energies is shown in Table IV. The calcu-
lated bulk moduli and the curve fitted to Murnaghan’s
equation are shown in Table V and Fig. 3. The estimated
bulk modulus is 26 GPa for B,O;-I and 126 GPa for
B,0;-11.

No experimental data of bulk modulus are available at
present. The prediction of the bulk modulus is generally
more difficult than that of lattice constants, and it is also
very difficult to evaluate the error of these estimations.

TABLE IV. Relation between cell volume and total energy in B,0;-I and B,0;-II. (Each relative
cell volume is the ratio to the corresponding optimized cell volume.)

B,O-1 B,O,-II
Volume ratio Total energy Difference Total energy Difference
(eV/B,03) (eV/B;0;)
0.6 — 1440.68 +2.38 —1438.10 +5.26
0.8 —1442.44 +0.62 —1442.65 +0.71
1.0 —1443.06 +0 —1443.36 +0
1.1 —1442.99 +0.07 —1443.12 +0.24
1.2 —1442.75 +0.31 —1442.58 +0.78
1.3 —1442.36 +0.70 —1441.83 +1.53
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TABLE V. Experimental density and calculated bulk moduli
in B203—I and B203'II.

B,0;-I? B,O;-II° Glass
Density (g/cm?) 2.56 3.11 1.84-1.91
Bulk modulus
(GPa)
This work 26 126
Empirical® 47 97 15
Experiment 15

*Reference 15.

"Reference 16.

“Empirical equation between density (p) and bulk modulus (X)
was employed. Reference 21. V(K /p)=—1.75+2.36p.

For the CASTEP calculation, the cell volume is only varied
isotropically; furthermore, a more dense set of k points
would probably improve its accuracy. On the other
hand, for the empirical equation detailed structural in-
formation is not taken into consideration.

D. Structural transformation

The nature of the ionic relaxation for different cell
volumes can be used to study the transformation between
the two structures. The optimized cell volume was
changed by —40, —20, +10, +20, +30, +70, and
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FIG. 3. Calculated “Murnaghan” curve for B,0;-1 and

B,0;-II. The relative cell volume is the ratio to the optimized
B,0;-I cell volume.

+100% for B,0O5-1 and changed by —40, —20, +10,
420, and +30% for B,O;-II. Their relaxed bond
lengths and angles are summarized in Tables VI and VII.
The structures calculated for B,O;-I are discussed for
three ranges of the cell volume as follows.

TABLE VI. Comparison of bond lengths and angles at different cell volumes in B,0s-1. (Relative

cell volume is the ratio to the optimized cell volume.)

Volume ratio 0.60 0.80 1.00 1.10 1.20 1.30 1.70 2.00
Lattice ratio 0.84 0.93 1.00 1.03 1.06 1.09 1.19 1.26

exp. cal. cal. cal. cal. cal. cal. cal. cal.
Distance (A)

B(1)-O(1) 1.404 1.340 1.319 1.354 1.379 1.407 1.439 1.535 1.655
-0(2) 1.366 1.387 1.315 1.329 1.343 1.357 1.370 1.387 1.368
-0(3) 1.336 1.290 1.308 1.338 1.355 1.372 1.389 1.399 1.380
-0(2") 2.616 1.422 2.099 2.524 2.670 2.807 2.931

B(2)-0(1) 1.336 1.338 1314 1.329 1.344 1.358 1.371 1.390 1.368
-0(2") 1.400 1.340 1.320 1.355 1.379 1.407 1.440 1.542 1.656
-0(3") 1.384 1.289 1.305 1.337 1.354 1.371 1.388 1.398 1.379
-0(1"") 2.636 1.423 2.119 2.529 2.675 2.812 2.935

0(1)-0(2) 2.387 2.175 2.252 2.327 2.371 2414 2.457 2.606 2.727

2.388 2.176 2.254 2.329 2.372 2.417 2.460 2.618 2.727

0(2)-0(3) 2.409 2.271 2.332 2.331 2.346 2414 2..457 2.373 2.387

2.333 2.034 2.184 2.284 2.337 2.388 2.439 2.503 2.503
0(3)-0(1) 2.309 2.030 2.184 2.285 2.339 2.372 2.441 2.504 2.502
2.409 2.273 2.335 2.343 2.347 2.358 2.370 2.375 2.387
Angle (deg)
O-B(1)-O 119.0 105.8 117.5 120.4 121.1 121.7 122.0 126.1 128.7
114.7 101.1 112.5 116.2 117.7 118.6 1194 117.0 110.7
126.2 116.1 125.6 122.8 120.8 119.5 118.5 116.8 120.6
0-B(2)-O 121.5 105.8 117.7 120.4 121.2 121.8 122.2 126.4 128.6
124.6 116.3 126.1 123.0 120.9 119.5 118.4 116.9 120.6
113.9 101.3 112.6 116.3 117.6 118.5 119.2 116.7 110.8

B-O(1)-B 130.5 116.1 122.4 131.2 134.5 137.4 139.7 149.4 152.7
-0(2)- 128.3 116.3 122.4 131.2 134.5 137.2 139.1 149.2 152.8
-O(3)- 133.3 110.4 127.0 133.5 135.8 137.2 139.2 139.1 138.5
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TABLE VII. Comparison of bond lengths and angles at different cell volumes in B,0;-II. (Relative
cell volume is the ratio to the optimized cell volume.)

Volume ratio 0.60 0.80 1.00 1.10 1.20 1.30
Lattice ratio 0.84 0.93 1.00 1.03 1.06 1.09

exp. cal. cal. cal. cal. cal. cal.
Distance (A)

B(1)-O(1) 1.373 1.274 1.328 1.358 1.376 1.396 1.416
-0(2) 1.507 1.335 1.406 1.461 1.498 1.535 1.561
-0(2") 1.506 1.314 1.390 1.451 1.484 1.517 1.542
-0(2") 1.512 1.367 1.447 1.507 1.568 1.636 1.725

O(1)-0(2) 2.364 2.142 2.234 2.313 2.376 2.446 2.507
-0(2") 2.440 2.202 2.305 2.365 2.402 2.450 2.499
-0(2") 2.409 2.205 2.319 2.408 2.464 2.530 2.604

0(2)-0(2") 2.428 2.125 2.257 2.366 2.428 2.489 2.539
-0(2") 2.394 2.179 2.281 2.351 2.403 2.466 2.525

0(2")-0(2") 2.389 2.080 2.230 2.350 2.415 2.489 2.567
Angle (deg)
O-B(1)-0 110.2 110.4 109.6 110.2 111.5 113.0 114.6
115.8 116.6 115.9 114.6 114.2 114.5 115.3
113.1 111.7 113.3 113.7 113.5 112.8 111.6
107.4 106.7 107.6 108.7 109.0 107.7 109.9
104.9 107.5 106.2 104.3 103.3 102.1 100.4
104.7 101.8 103.6 104.7 104.6 104.2 103.5

B-O(1)-B 138.6 104.5 117.6 135.1 141.7 145.4 148.9
-0(2)- 123.8 112.1 117.0 121.2 121.5 121.8 119.4
-0(2)- 114.7 111.1 114.3 115.7 115.7 115.8 116.0

-0(2")- 118.9 107.1 113.2 118.9 120.4 121.6 123.2
1. Relative cell volume = 0.80-1.30 longer than the other B-O bonds. Therefore, this sug-

gests that this transformation is probably reversible at O
K. On the other hand, it is interesting to note that no
transformation from B,0;-II to B,0; -I has been ever ob-
served.?? There may be a barrier to the transformation
due to entropic factors.

We now consider the manner of the transformation.

In the initial configuration, all the B-O bond lengths
were varied in proportion to the cell-volume change.
After optimization the intertriangle angles (O-B-O) do
not change much, but the connecting angles (B-O-B)
change considerably. Thus the shape of the BO; triangle

does not vary significantly; moreover, the B-O bonds ex-  Wwe note first that the original structures of B,0;-I and

pand by 5%, so that they come close to the un- g G i are closely related. Considering the latter, if we

compressed values. The change in volume is accommo- define the B-O bond length as being shorter than 1.51 A
dated largely by the change in the B-O-B connecting an- cline the onc lengt as being

gles. Among the contributions to the volume change, the
change in the B-O bond lengths contributes 28%, while
the change in the connecting angles contributes 72%. 3

The change in the B-O-B connecting angles therefore [ S ) — ]B ] :O 1'
clearly dominates the deformation of the structure. — H : —a BM-Q&%
j 25 [ ol —— B§1 )-0(3? |
2. Relative cell volume ~ 0.60 2 [ P 0@@) | —=—B(1)-0(2') |
c L 1
The most interesting result is that the BO; triangular ,% 2 [ 0(3) ,I ]
structural unit in the minimized structure for the 60% 5 r 1
cell volume turns inFo a BO, tetrahedrgx}. This corre- _§ " o Oﬁ-:m\o 32/4 1
sponds to a pressure-induced phase transition. Although o 15 ;
the original cell is only isotropically compressed and the @ [ ; —&— ]
final structure is not completely the same as B,0,-II, it r ]
agrees with the observed phase diagram in that the four- 1 b : :
fold BO, structural unit is more stable than threefold 0.5 1 1.5 2 25
BO; structural unit at high pressure.!” relative volume
In the case of B,0;-1I, the structure at 130% volume
does not exactly show the reverse structural transforma- FIG. 4. Relation between the cell volume and B-O bond

tion, but it shows the fourth B-O bond becoming much  length in B,Os-1.



then only the first three shortest B-O distances partici-
pate in the B-O bonding; all boron atoms become three-
fold coordinated and all the oxygen atoms become three-
fold coordinated. These coordination numbers are the
same as for B,O;-1. Conversely, when B-O bonding is as-
sumed to be within 2.7 A in B,0O;-I, that is, the first four
shortest B-O distances participate in B-O bonding, all the
boron atoms become fourfold coordinate, and one-third
of the oxygen atoms become twofold coordinated and the
remaining two-third become threefold coordinated.
These coordination numbers are the same as for B,0;-1I.
It is interesting that Berger’s data,?>?* for B,0;-I which
was shown by Strong and Kaplow,?® and by Gurr et al.'®
to be incorrect, has the same distribution of coordination
numbers if the cutoff in the B-O bonding is assumed to be
1.8 A. Therefore, Berger’s data are not far from those of
the other two authors, although Berger concluded that
B,0;-I consists of BO, tetrahedra.

With this background we can explain the observed
manner of the transformation in B,0;-I as follows: As its
cell volume is reduced, the O(1) or O(2) atom approaches
the third new boron atom, B(2') or B(1’), which lies on
the other ribbon, and the oxygen and boron atoms start
to bond. However, the O(3) atom, which cross links the
different ribbons of the BO, triangle, keeps it coordina-

(a) relative cell volume = 1.0 (BO3 structural unit)

(b) relative cell volume = 0.6 (BOg4 structural unit)

FIG. 5. Schematic diagram for structural transformation.
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FIG. 6. Various energy contributions to the total energy in
B,0;-1. (E| is the total kinetic energy; E, is the local pseudopo-
tential energy; E,; is the nonlocal pseudopotential energy; E, is
the Hartree energy; E...r is the exchange-correlation energy
correction; E. is the Coulombic energy; E ... is the core ener-

gy.)

tion. The change in the B-O bond distances is shown in
Fig. 4. The pattern of the structural transformation is
shown in Fig. 5.

The B-O coordination number changes from three to
four smoothly without breaking any B-O bonds. It is in-
teresting to note that Tsuneyuki’® also observed the
smooth structural transformation from the SiO, tetrahed-
ron into the SiO¢ octahedron in his MD study.

What is the driving force for this transformation? It is
useful to analyze the individual energy contributions to
the total energy, as was shown by Yin and Cohen.?
These are shown in Table VIII and Figs. 6 and 7. The
contribution of the Coulombic energy (E_) is much larger
than that of the others. When the cell volume is reduced,
the Coulombic energy becomes larger, and as is well
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FIG. 7. Various energy contributions to the total energy in
B,Os-11. (E; is the total kinetic energy; E, is the local pseudo-
potential energy; E,; is the nonlocal pseudopotential energy; E,
is the Hartree energy; E.,. is the exchange-correlation energy
correction; E, is the Coulombic energy; E .. is the core ener-

gy.)
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TABLE VIII. Comparison of various contributions to the total energy in B,0O;-I and B,O;-II. (Relative cell volume is the ratio to

the optimized cell volume.)

B,-0;-1 (eV/B,03)
Volume ratio 0.6 0.8 1.0 1.1 1.2 1.3 1.7
Total kinetic energy 992.94 959.38 940.78 932.50 924.87 917.76 905.87
Local potential energy —1182.92 —1242.35 —1282.02 —1294.40 —1303.78 —1310.85 —1341.47
Nonlocal potential energy 226.99 229.31 236.65 231.80 233.05 234.28 236.10
Hartree energy —270.55 —351.10 —428.66 —461.61 —490.83 —516.67 —635.58
Exchange-correlation 110.46 107.72 106.10 105.40 104.75 104.14 103.03
Coulombic energy —1336.11 —1159.29 —1021.02 —966.76 —920.05 —879.56 —715.43
Pseudopotential core energy 18.51 13.88 11.10 10.09 9.25 8.54 6.53
Total energy —1440.68 —1442.44 —1443.06 —1442.99 —1442.75 —1442.36 —1440.94
B,0;-11 (eV/B,0,)
Volume ratio 0.6 0.8 1.0 1.1 1.2 1.3
Total kinetic energy 1017.84 969.27 944.14 931.53 918.67 907.69
Local potential energy —1128.88 —1188.96 —1231.32 —1241.91 —1247.78 —1253.03
Nonlocal potential energy 228.27 231.42 233.70 235.52 237.60 239.34
Hartree energy —202.41 —280.21 —363.06 —391.71 —410.45 —427.25
Exchange-correlation 112.77 108.97 106.82 105.78 104.72 103.81
Coulombic energy —1488.57 —1300.32 —1147.37 —1094.81 —1056.79 —1023.15
Pseudopotential core energy 22.89 17.17 13.74 12.49 11.45 10.57
Total energy —1438.10 —1442.65 —1443.36 —1443.12 —1442.58 —1441.83

known this Coulombic energy favors high coordination.
On the other hand, when the cell volume increases, the
electronic kinetic energy (E;), the electron-electron
Coulomb energy (E,), and nonlocal pseudopotential en-
ergy (E,;) are reduced. This favors the lower coordina-
tion state in which the valence electrons prefer to be uni-
formly distributed. The Coulombic contribution is clear-
ly, however, the driving force for the transformation
from the B,0;-1 to B,0;-1I structures.

3. Relative cell volume ~2.0

The 170% cell volume corresponds to the volume in
the 1500 K molten state. However, even in the case of
200% cell volume, the structure still keeps the same
structural units and the boroxol ring is not observed. It
is interesting to note that one of the longest B-O bonds is
elongated, while the other two bonds begin to shorten.
Although the longest bond is still thought not to be bro-
ken, its bonding is weakened and the other two bonds are
strengthened. This means that the bonding state is
changing from threefold to twofold coordination. This
structural feature may be present in the molten state.

IV. CONCLUSIONS

The application of first-principles total-energy calcula-
tions to B,0; has given the following important results.

(i) A common set of pseudopotentials for boron and ox-
ygen can reproduce two different crystal structures
(B,05-I and B,0O;-II) well. With this pseudopotential, not
only lattice parameters but also internal coordinates are
adequately modeled.

(ii) The bulk modulus is estimated as 26 GPa for B,0;-
I and 126 GPa for B,0;-II.

(iii) When the cell volume is reduced, the structural
transformation from the BO; triangular structural unit
into the BO, tetrahedral unit is observed. The manner of
its transformation has also been elucidated.

The CASTEP program can be used for MD. In the near
future, the structure of a large system, that is a super cell
of a disordered system, will be simulated. At the moment
the feasible number of atoms would be 50-60 which
when used would be difficult in realistically reproducing
the vitreous structure. In subsequent papers, we will,
however, show how the structure of glassy B,O; may be
modeled using MD simulation methods employing
effective potentials.
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