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ABSTRACT: Metal halide perovskite solar cells show great promise, in terms of
their high-power conversion efficiency. However, the dynamic electron−hole
separation process remains elusive. Using ab initio molecular dynamics, we
discover that the presence of photogenerated electron trapped at a Pb2+ ion can
induce significant electron−hole separations on the CH3NH3PbI3 perovskite in the
presence of HI solution. In this dynamic process, the separated electron is
transferred to the Pb+ ion to form a Pb0 atom, while the separated hole is trapped
in an I dimer. The reason behind this induced electron−hole separation is clearly
revealed. Furthermore, the charge carrier transfer mechanism is elucidated, which
not only explains the carrier migration but also the degradation of the perovskite in
a humid environment. Comparing the atomic motions in CH3NH3PbI3 and
CH3NH3PbCl3 quantitatively demonstrates that CH3NH3PbI3 is more active but
less stable than CH3NH3PbCl3. The proposed mechanism for the electron−hole
separation mechanism and perovskite degradation in humid conditions provides insights into the design of a highly efficient
perovskite with good stability.
KEYWORDS: perovskite solar cells, electron localization, ab initio molecular dynamics, electron−hole separation, density functional theory

■ INTRODUCTION
Hybrid organic−inorganic halide perovskite solar cells (PSCs)
have been rapidly developed since the first invention in 2009,1

with its power conversion efficiency increasing from 3.8% to
26.7%.2 As promising next-generation photovoltaic materials,
the PSCs not only have excellent properties, including the
suitable band gap,3 long charge carrier diffusion length,4 high
photoabsorption coefficient,5 and long carrier lifetime,6 along
with commercial potential that ensures the economic
feasibility.7 These extraordinary advantages prompt the PSCs
to be widely employed in solar cells, light-emitting diodes,8

photodetectors,9 and lasers.10

Despite the high performance of the PSCs, the factors
determining photovoltaic efficiency remain elusive. It is widely
acknowledged that retarding nonradiative electron−hole
recombination rates constitutes an efficient strategy for
facilitating charge carrier transfer.11 To separate the
electron−hole pair, the presence of trap states for both
electrons and holes is of significance,12−14 as evidenced by the
critical role of carrier localization within PSCs. Consequently,
the investigation of charge carrier-trapped states has drawn
significant attention over the past decade.15−19

It is noteworthy that intrinsic defects are inherently
introduced during the synthesis of PSCs and have been
posited as pivotal factors in carrier trapping and electron−hole
pair recombination.20 As a result, extensive investigations have

centered on vacancies of iodine(I) and lead (Pb) in the
CH3NH3PbI3 (MAPbI3) perovskite. For instance, Long and
co-workers observed a Pb vacancy in the perovskite that results
in a shallow hole trap closing to the valence band, which
facilitates hole transport and concurrently delay electron−hole
pair recombination.21 Angelis, Petrozza, and co-workers
identified that intrinsic charge traps were caused by the
peculiar iodine redox chemistry. They suggested that the high
photovoltaic efficiency and long-term stability of solar cells can
be achieved by adjusting the defect redox chemistry.22,23 Our
group made a pertinent observation, elucidating that photo-
generated electrons exhibit delocalization on the defect-free
MAPbI3 surface but can be readily localized on perovskites
containing I vacancies.24 Furthermore, Zhang and Sit reported
the presence of excess electrons trapped in both the shallow-
level and deep-level states on the MAPbI3 surface containing I
vacancies. Intriguingly, these vacancies, while initially more
stable on the surface, migrate from the top layer to the sublayer
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by trapping photogenerated electrons, leading to the formation
of deep trap states that accelerate undesired photodegrada-
tion.25 Collectively, the previous works underscore the dual
nature of defects: shallow trap states caused by some defects
facilitate the photogenerated charge carrier trap and transport,
whereas deep trap states caused by other defects accelerate
electron−hole pair recombination and structural degradation.
It is evident that defects exert a profound influence not only on
the photovoltaic efficiency but also on the overall stability of
the perovskite material.
While the presence of defects in perovskite materials is

inevitable, an excess of such defects readily causes deep trap
states, which can detrimentally affect photogenerated carrier
migration, leading to perovskite degradation. As a solution, our
previous work has unveiled a promising avenue for an
alternative form of carrier localization: We have identified
the presence of a hole-trapped dimer state within the defect-
free MAPbI3 bulk material and elucidated the mechanism of
hole diffusion, characterized by a low energy barrier.26 In
addition to the photogenerated hole localized in bulk, we also
observed a shallow trap state of the charge carrier on the
defect-free MAPbI3 surface with different terminations in the
presence of the solution.27 Furthermore, as a potential remedy,
numerous experimental studies have indicated that the defect
passivation may reduce the concentration of the surface
defects, consequently enhancing both the efficiency and
stability of the perovskites.28−32 These findings emphasize
the influence of the surrounding environment, suggesting that
solvation and ligand effects are critical factors in the study of
charge carrier-trapped states. Although significant progress has
been achieved in comprehending trap states and photo-
generated carriers, most reported carrier-transport mechanisms
have relied on static quantum chemical calculations and band
structure analysis, with little exploration of the dynamic
structural transformations of perovskites. Additionally, intrinsic
mechanisms governing electron−hole pair separation and the
migration of photogenerated carriers remain elusive.
In this work, a first-principles study was conducted to

elucidate the localization of photogenerated carriers in the
MAI-terminated MAPbI3(001) perovskite surface, the most
stable surface in the MAPbI3 perovskite.

27 It was observed that

a localized electron on Pb2+ can surprisingly induce electron−
hole separations, leading to a coexistence state featuring both
trapped electron and trapped hole on the MAPbI3 surface in
the presence of the solution, as revealed through the ab initio
molecular dynamics (AIMD) simulations. After meticulously
examining its dynamic structural transformations, we identified
a distinctive hole-trapped state associated with an I dimer.
Furthermore, a mechanism for perovskite degradation in a
humid environment�an important issue of perovskite
materials�was proposed, aiming to provide insights into the
stability and performance of perovskite materials.

■ RESULTS AND DISCUSSION
To simulate the photoexcited structure of perovskite, an
additional electron was introduced into the MAPbI3 system.
The AIMD calculations were carried out at room temperature
to investigate the dynamic structural transformations of the
MAPbI3 surface when exposed to a HI-saturated solution at a
concentration of 3.15 mol/L, closely mirroring the real
experimental situation (3.162 mol/L).33 In this system, a
localized electron on Pb2+ was found, resulting in the
formation of Pb+. Additionally, an unexpected hole-trapped
state was detected during the AIMD simulation. The hole
localized on an I dimer with an I−I distance of 3.08 Å (Figure
1a), while the electron remained trapped on the Pb ion,
establishing the coexistence of both electron- and hole-trapped
states. The AIMD trajectory provides insights into the dynamic
formation of the I dimer, which occurred through a series of
sequential steps: First, the Pb−I bond weakened after the
electron trapped on the Pb, leading to the liberation of a
weakly bonded I−. Subsequently, weakly bonded I− migrated
to the sublayer of the perovskite. Finally, this I− interacted with
another I− to form an I dimer, resulting in hole trapping.
It is well established that electron−hole pair recombination

can occur readily; however, carrier transport can significantly
impede this recombination process. To assess the stability of
this coexistent electron−hole structure, a prolonged AIMD
simulation was conducted. The MD simulation revealed that
this coexisting trap state of the electron and hole was
frequently observed within the dynamic simulations at room
temperature. Notably, another I dimer structure emerged

Figure 1. Snapshots with spin densities from MD simulation of MAI-terminated MAPbI3 surfaces in the presence of 3.15 mol/L HI solutions with
an extra electron. Side view of (a) one I dimer structure, (b) side, and (c) top views of two I dimer structure, respectively. The iso-value of spin
densities is 0.002 e/Å3. The spin-up and spin-down charge densities are represented by yellow and cyan, respectively. Black: Pb; purple: I; white: H;
brown: C; silver: N; red: O. This color scheme is used throughout the paper. The characteristic distance is marked by the double-arrow line.
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(Figure 1b,c) and disappeared cyclically during the MD
simulations. The weakly bonded I− not only had the capacity
to migrate to the sublayer but could also move to a
neighboring I− on the top layer, resulting in the formation of
another distinct type of I dimer. With the formation of this I
dimer, the hole was trapped within the dimeric structure.
Concurrently, surplus electrons were released from the I dimer,
along with the separation of the electron−hole pair. To discern
the distribution of spin charge within the system, a spin charge
density analysis was employed. It was observed that the total
spin charge density of two iodides changed from −2 to −1.5 |e|
during the formation of the I dimer, indicating the release of
approximately 0.5 electron from the I dimer. These released
electrons could either be trapped on the Pb+ (Figure 1a) or on
another coordination-saturated Pb2+ (Figure 1b,c). Impor-
tantly, electrons trapped on another Pb2+ promoted the
breaking of the nearby Pb−I bond, thereby further expediting
the separation of the electron−hole pair and subsequently
generating additional I dimers. This additional formation of an
I dimer released another 0.5 electron, which were in turn
trapped on the Pb2+, ultimately leading to the formation of
another Pb+ (Figure 1b,c). This discovery holds potential
significance in elucidating the pathways of photogenerated
charge carrier transfer and the degradation mechanisms of
perovskite materials in humid conditions.
To characterize the electronic structure of the system,

calculations of the density of states (DOS) were performed for
the electron−hole coexisting state on the MAPbI3 surface,
incorporating spin−orbit coupling (SOC) (Figure 2). The

total DOS calculations show that there are two polaron peaks
in the band gap (Figure 2a), localized on Pb and I, respectively.
The projected DOS (PDOS) analysis of Pb and I demonstrates
that these polaron peaks are mainly composed of the 6p
orbitals of Pb and the 5p orbitals of I (Figure 2b,c).
Furthermore, a detailed DOS analysis of these polaron peaks
unravels that the occupied polaron peak of Pb, located 0.41 eV
above the valence band maximum (VBM), corresponded to
the Pb+ with trapped electrons (Figure S1a). Meanwhile, the
unoccupied polaron peaks below the conduction band
minimum (CBM) were assigned to be the I dimer structure
(Figure S1b). To gain a comprehensive understanding of the
advantages associated with the coexistent electron−hole state,
a wave function analysis in the real space was carried out. As
depicted in Figure S2, the CBM was found to be delocalized
on Pb atoms, whereas the Pb+ with trapped electrons appears
to be a surface state. This configuration can facilitate the
transfer of photogenerated electrons. Concurrently, the
delocalized VBM on the I atoms served as a favorable hole
transport channel (Figure S3). Moreover, the polaron peak at
−4.38 eV, belonging to the 5p orbital of I, clearly reveals
bonding between two I atoms (Figure S3b), providing further
evidence of I dimer formation. This dimer configuration could
act as a supporter of ion migration, thereby enhancing hole
transfer. To contrast the effect of the I dimer structure, the
DOS of the perovskite with electrons localized on Pb was also
analyzed/compared to that without the formation of I dimer.
In this case, the trap states associated with the I dimer
structure above the Fermi level disappear, while the surface

Figure 2. (a) TDOS of the electron−hole coexisting state of Pb and I on the MAPbI3 surface with SOC. PDOS of (b) Pb and (c) I in the
electron−hole coexisting system with SOC. The Fermi level is set at 0 eV.
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states of Pb+ remain. These findings indicate the crucial role of
the I dimer as a hole trapper, influencing the recombination/
separation of electron−hole pairs.
A previous study reported that the typical distance of I dimer

was approximately 3.30 Å, whereas the equilibrium distance
between two iodide ions in pristine MAPbI3 was 4.4 Å.

26 Thus,
to explore the transformation mechanism of the I dimer, a
series of MAPbI3 structures from the MD simulations were
investigated, encompassing various I dimer structures with
bond distances ranging from 3.0 to 4.4 Å (Figure 3a−f).
Interestingly, the spin density of the I dimer remains constant
at −0.71 μB when the bond distance is less than 3.24 Å, aligned
with the optimized bond distance of the I dimer. As the bond
distance of the I dimer increases, its spin density gradually
approaches 0 μB until the I dimer dissociates into two separate
I− ions at a distance of 3.85 Å (Figure 3g). Furthermore, it is
noteworthy that the spin density of the electron trapped on Pb
exhibits a similar change trend to that of the hole trapped on
the I dimer. This observation implies that the surplus electrons
resulting from the separation of the electron−hole pair are
predominantly localized on the Pb+.
To further identify the oxidation state of the Pb and I dimers

and to understand the electron-transfer dynamics, Bader
charge analysis was conducted (Figure 3h). With an additional
electron trapped on Pb2+ in this system, it was observed that
Pb2+ is reduced to Pb+ first. During the formation of the I
dimer, two I− ions combine, subsequently releasing some
electrons. These released electrons are then accepted by Pb+,
further reducing Pb+ and bringing the oxidation state of Pb

close to ∼0. This phenomenon offers a plausible explanation
for the commonly observed Pb0 state in experiments involving
PSCs.34,35 The separation of the electron−hole pair occurs
concomitantly with the formation of the I dimer, but the
recombination of the electron−hole pair happens when the I
dimer transforms into two separate I− ions. Moreover, the
energy plot shows that as the I−I bond distance increases, the
separated electron and hole recombine, leading to a decrease in
energy (Figure S4), which aligns well with the experimental
observation of favored electron−hole pair recombination.
During the AIMD simulation, an intriguing observation was
made as the bond distance of the I dimer was extended: one of
the iodides in the I dimer approaches the third iodide in the
same layer, leading to the formation of a new I dimer as the
original I dimer disappears (Figure S5). Meanwhile, the
trapped hole migrates from the former I dimer to the newly
formed I dimer, establishing a chain for transporting charge
carriers (Figure S5). These structural alterations elucidate a
potential mechanism for the migration of hole trap states
(Video S1).
Having identified the coexisting trap states of an electron

and a hole in the MD simulations, we are in the position to
investigate whether this state is a stable state. Namely, can it
persist after structural optimization? To address this inquiry, an
extended supercell (p(4 × 2) supercell) with coexisting
electron and hole states from the MD simulation was
optimized with an additional introduced electron (see details
in the Supporting Information). The result reveals the stable
coexistence of two Pb+ ions and two I dimers (Figure S6),

Figure 3. Geometric structures and spin densities of (a−f) series of MAI-terminated MAPbI3 surfaces in the presence of 3.15 mol/L HI solution
with an extra electron from AIMD simulations. The iso-value is 0.002 e/Å3. (g) Spin densities of the electron trapped at Pb and the hole trapped at
the I dimer and (h) Bader charges of the valence states of Pb and I dimer as a function of the I dimer distance.
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confirming the persistence of this coexisting state in both
dynamic and optimized calculations. Obviously, the introduced
electron is trapped on one Pb2+, while the separated electron
and hole are localized on another Pb2+ and two I dimers,
respectively. Furthermore, the optimized bond distances of
these two I dimers measure 3.29 and 3.33 Å, respectively,
which agree well with the typical I dimer distances in the
previous work.26

It is well known that halide perovskites are prone to
instability when exposed to a humid environment,36 although
the moisture has been suggested to increase the lifetime of
charge carriers.37 Thus, the different concentrations of the HI
solutions are then taken into consideration in this work. To
explore the impact of different concentrations of HI solutions
on MAPbI3, HI solutions of 1.05 and 2.10 mol/L were added
above the surfaces (Figure 4a,b). The MD simulations show
the coexistence of the hole trapped on the I dimer and the
electron trapped on a Pb ion under both solution conditions,
mirroring the behavior observed for MAPbI3 in an HI-
saturated (3.15 mol/L) solution (Figure 1a). Furthermore, a
water-only environment and dry condition were used to
explore the role of the water solvent in dynamic electron−hole
separation. It was found that the electron−hole separation
readily occur in the presence of water molecules. However,
under dry conditions, the additional electron delocalized across
the entire system (Figure S7), and no electron−hole separation
was observed throughout the MD simulation. This suggests
that the presence of water molecules is critical, while HI may
not be essential for the dynamic electron−hole separation/
recombination. Specifically, solvation indirectly expedites the
formation of the I dimer. Concomitant with structural
transformations, the hole and electron are trapped on the I
dimer and coordination-unsaturated Pb, respectively, which

would further weaken the Pb−I bond, contributing to
perovskite degradation.
For comparison, a parallel investigation involving another

halide perovskite, MAPbCl3, was conducted in which identical
conditions and methodology were applied. Over the same time
scale, no evidence of a Cl dimer formation was observed
(Figure 4c). In pursuit of understanding the underlying cause,
the canonically averaged standard deviation38 was used, in
which the positions of I and Cl atoms were calculated
according to the following formula

r r( )i i i
2= (1)

where ri represents the location of atom i at time t, and the
angular bracket indicates ensemble and time averaging along
the last 4 ps MD trajectories. As shown in Table 1, the

standard deviation of Cl atoms is 0.302 Å in the presence of HI
solution of 3.15 mol L−1, while those of I atoms in the presence
of HI solutions of 3.15, 2.10, and 1.05 mol L−1 are 0.405,
0.359, and 0.387 Å, respectively. These results unequivocally
demonstrate that the migration distance of Cl is significantly
smaller than those of I, indicating the inherent challenge in the
formation of Cl dimers. We suggest that the different redox

Figure 4. Side views (upper) and top views (lower) of geometric structures and spin densities of MAPbI3 surface in the presence of HI solutions of
1.05 mol/L (a) and 2.10 mol/L (b), and MAPbCl3 surface in the presence of 3.15 mol/L HI solution (c). The iso-value is 0.002 e/Å3. Green: Cl.

Table 1. Standard Deviations in the Positions of I and Cl
Atoms in MAPbI3 and MAPbCl3 under Different
Concentrations of HI Solutions

conditions standard deviations (Å)

MAPbI3 (3.15 mol/L) 0.405
MAPbI3 (2.10 mol/L) 0.359
MAPbI3 (1.05 mol/L) 0.387
MAPbCl3 (3.15 mol/L) 0.302

JACS Au pubs.acs.org/jacsau Article

https://doi.org/10.1021/jacsau.4c01261
JACS Au 2025, 5, 1738−1745

1742

https://pubs.acs.org/doi/suppl/10.1021/jacsau.4c01261/suppl_file/au4c01261_si_001.pdf
https://pubs.acs.org/doi/10.1021/jacsau.4c01261?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/jacsau.4c01261?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/jacsau.4c01261?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/jacsau.4c01261?fig=fig4&ref=pdf
pubs.acs.org/jacsau?ref=pdf
https://doi.org/10.1021/jacsau.4c01261?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


chemistries of I and Cl may offer an explanation for the
difference in dimer formation of I and Cl. The stronger
oxidizing ability of Cl, relative to I, culminates in the stronger
ability to gain electrons for Cl compared to I. Consequently,
the release of electrons to form the I dimer becomes more
feasible. Furthermore, the larger standard deviation of I/Cl
atomic motions corresponds to a more rapid degradation of
the metal halide perovskites. This disparity enhances the
mobility of the photogenerated carriers but simultaneously
undermines the stability of the perovskite. This may provide a
rationale behind the better photovoltaic efficiency observed in
MAPbI3 compared to MAPbCl3.
The reliability of the theoretical calculations can be

supported by several experimental techniques. For instance,
the localization of the electrons on a Pb2+ ion leads to its
reduction to Pb+ or Pb0, a phenomenon confirmed by high-
resolution X-ray photoelectron spectroscopy, which defected
the presence of Pb0 in the halide perovskite.35 More
specifically, the valence state, coordination number, and local
atomic environment of Pb can be precisely analyzed using an
X-ray absorption fine structure. In the case of I dimer
formation, Baran and co-workers employed absorption spec-
troscopy to a distinct absorption peak at around 500 nm,
characteristic of I dimers. The quantification of these dimers
was achieved by applying the Beer−Lambert Law to determine
their molar extinction coefficients.39 Additionally, transient
fluorescence spectroscopy and transient absorption spectros-
copy can measure the lifetimes of excitons in different
perovskites such as revealing the differences between
MAPbI3 and MAPbCl3. Furthermore, grazing incidence X-ray
diffraction has provided evidence of partial decomposition and
photodegradation in the halide perovskite.34

■ CONCLUSIONS
In summary, by performing AIMD simulations coupled with
meticulous charge analyses, we unveiled for the first time that a
localized electron on Pb induces cyclically a dynamic
separation/recombination of electron−hole pairs, leading to
the consequent reduction of Pb+ or other Pb2+ ions. This, in
turn, results in the coexistence of trapped electrons and
trapped holes within the MAPbI3 perovskite. We revealed that
once the electron is localized on Pb2+, the Pb−I bond is
substantially weakened. Subsequently, the weakly bonded
iodide migrates to a nearby iodide, leading to the formation
of an I dimer. This process concurrently causes the release of
certain electrons from the dimer, thereby promoting the
separation of electron−hole pairs. The dynamic structural
transformation of the MAPbI3 perovskite was visualized and
related to the charge carrier transfer mechanism. This charge
carrier transfer mechanism serves as a comprehensive
explanation not only for charge carrier migration but also for
observed perovskite degradation in humid environments.
Moreover, the difficult formation of Cl dimer in the MAPbCl3
perovskite was demonstrated, indicating a poor mobility of the
photogenerated carriers, which accounts for the comparatively
inferior photovoltaic efficiency of MAPbCl3 compared with
MAPbI3.

■ METHODS
All the density functional theory (DFT) calculations in this work were
performed using the Vienna ab initio simulation program
(VASP).40,41 The projector-augmented wave method41,42 was utilized
to evaluate the interactions between the valence electrons and ions,

and the cutoff energy of plane-wave basis expansion was set to be 400
eV with 4 × 4 × 1 Monkhorst−Pack k-point mesh sampling for
Brillouin-zone integration for the p(2 × 2) surface unit cell. The
valence electrons of 5d106s26p2 for the lead (Pb) atom, 5s25p5 for the
iodine(I) atom, 3s23p5 for the chlorine (Cl) atom, 2s22p2 for the
carbon (C) atom, 2s22p3 for the nitrogen (N) atom, 2s22p4 for the
oxygen (O) atom, 1s1 for the hydrogen (H) atom, and 3s23p64s1 for
the potassium (K) atom were chosen. The generalized gradient
approximation was used with the Perdew−Burke−Ernzerhof func-
tional (PBE)43 to perform all spin-polarized calculations. The
optimized structures were reached when the force on the relaxed
atoms was less than 0.05 eV/Å. For MAPbI3, our previous work
showed that the DFT + U method can yield similar structures and
reasonable energies as PBE0 and HSE06 methods, where the
Hubbard-type correction was set on Pb 6p and I 5p orbitals with
effective U values of 9 and 8 eV, respectively.24,27 In this work, the
same approach, namely, DFT + U was utilized for structure
optimizations and the AIMD simulations. For the van der Waal
correction, the DFT-D3 method was employed to describe the weak
interaction in the system.44,45 Dipole corrections were applied along
the surface’s normal direction. To simulate photogenerated electrons,
an extra electron was added in the system, in which similar approaches
have been verified in previous works.24,46−48 The AIMD calculations
were carried out to simulate all of the systems in the presence of
solutions at a constant temperature (300 K) with a time step of 1 fs
and a total time over 10 ps. To evaluate a more reliable DOS analysis,
the SOC49 and HSE06 hybrid functional50 were introduced in this
work (Figure S8).
The cubic phase of MAPbI3 was chosen with the calculated lattice

constant of 6.29 Å, which agrees well with the X-ray diffraction
experimental data of ∼6.30 Å.51−53 A p(2 × 2) supercell
stoichiometric MAI-terminated MAPbI3(001) surface with three
atomic layers was constructed, while the bottom layer was fixed and
the others relaxed. To simulate the slabs in the presence of HI
solutions with different concentrations, a ∼ 10 Å solution layer
composed of 52 H2O molecules and one/two/three HI molecules
were placed above the surfaces.27 The concentrations of the solution
containing one, two, and three HI molecules are 1.05, 2.10, and 3.15
mol/L, respectively, the highest of which is consistent with the
experiment condition (3.162 mol/L).33 A 10 Å vacuum layer was
positioned at the upper boundary of the solution to effectively
eliminate periodic boundary effects along the Z-axis.
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