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A B S T R A C T

In this paper, the linear and second order nonlinear optical properties of CsGeX3 (X=Cl, Br, and
I) compounds have been investigated using the finite field method combined with the density
functional investigation. The obtained results are in good agreement with the experimental va-
lues. The electron density distribution nearby the fermi level is the lobe-like lone pair electrons
which make the germanium-halogen polyhedron distorted. The atomic contribution to the bi-
refringence and SHG response is analyzed using the Born effective charges, the variation of the
atomic charges, and the SHG density method. The results show that the germanium and halogen
atoms give main contribution to the optical anisotropic birefringence and the SHG response.

1. Introduction

Since 1960s, lots of attentions have been paid to the nonlinear optical (NLO) compounds which can be used to produce coherent
light via second-harmonic generation (SHG) in solid state lasers [1]. Many NLO compounds with perfect nonlinear optical properties
have been successfully synthesized, such as the very famous ultraviolet (UV) nonlinear optical crystals BBO [2], LBO family [3–6],
KBBF family and KBBF-like compounds [7–24], some other acentric borates [25–40], carbonates [41–48], phosphates [49–53], and
so on. Except the deep ultraviolet/ultraviolet (DUV/UV) nonlinear optical compounds, the infrared (IR) nonlinear optical compounds
have also attracted plentiful attentions. Besides the commercially widely used IR NLO crystals AgGaS2, AgGaSe2, and ZnGeP2
[54–56], lots of IR NLO compounds have also been obtained, examples including Li3VO4 [57,58], Pb17O8Cl8 [59], BaGa4X7 (X= S,
Se) [60,61], ATeMoO6 [62–65], ABX3 (A=Cs, Rb; B=Ge, Cd; X=Cl, Br, and I) [66–71], and so on [72–76]. While comparison with
the DUV/UV NLO compounds, the IR NLO compounds are still relative rare, which push people to design and synthesize more IR NLO
compounds to meet the needs.

To promote designing novel IR NLO compounds, lots of efforts have been made to investigate the electronic structures, the linear
and nonlinear optical response. Tang et al. have investigated the linear and second-order optical response of CsGeX3 (X=Cl, Br, and
I) using the first principles method [77], the results show that the lattice distortion give main contribution in determining the linear
and nonlinear optical responses of CsGeX3 (X=Cl, Br, and I) compounds. Kang et al. have investigated the bandgap and the SHG
response of the halide crystals using the first principles method [78], the results show that the [MXk] (M= center cation, X= halide
anion, k=6, 4, 3, or 2) anionic units play an important role in determining the optical response. Grant Walters et al. have in-
vestigated the electro-optic response in germanium halide perovskites using the first principles method [70].

Recently the finite field combined with first principles method have been utilized to investigate the linear and nonlinear optical
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response under external electric field. Using the finite field one can get the macroscopic polarization and the linear and nonlinear
optical response under different external photoelectric field, and one can also get the atomic charges and the variation of the atomic
charges under external photoelectric field, which can be used to distinguish atomic contribution to the total SHG response [79–81].
This strategy has been used to investigate the microscopic origination of the SHG response in BPO4 [82,83], KBBF family [80],
ATeMoO6 (A=Mg, Zn, and Cd) compounds [79], ABCO3F compounds [81], and so on.

In this paper, the finite field method combined with first principles investigation will be used to investigate the linear and
nonlinear optical response of CsGeX3 (X=Cl, Br, and I) compounds. The obtained refractive indices, birefringence and SHG tensors
are in good agreement with the experimental values and first-principles results. The lone-pair electrons of germanium atoms are
verified by the orbitals nearby the fermi level. And the atomic contribution to the optical anisotropic birefringence and the SHG
response are analyzed using the Born effective charges, the variation of the atomic charges, and the SHG density method. The results
show that the germanium and halogen atoms give main contribution to the birefringence and the SHG response.

2. Numerical calculations details

The macroscopic polarization under different electric field can be expressed as [79]

∑ ∑= +p χ E χ E Ei
mac

j
ij j

jk
ijk j k

( ) (1) (2)

(1)

More details can be found in Ref. [79]. In this paper, the macroscopic polarization Pi
mac( ) was firstly calculated using the finite

field methods implemented in ABINIT code [84–86], and then the refractive indices (and birefringence) and the nonlinear optical
coefficients were obtained [79,80]. The ICSD data (CsGeCl3: ICSD-62557; CsGeBr3: ICSD-62558; CsGeI3: ICSD-62559) were used to
do the finite field calculations. During the calculations, the PBE-GGA functional were used, and the norm-conserving pseudopo-
tentials(NCP) [87] were adopted. The energy cutoff was set as 40.0 hartree along with a dense k-point sample (12×12×12). For
comparison, the SHG response were also calculated using the Density-Functional Perturbation Theory (DFPT) method [88] im-
plemented in ABINIT code. During the calculation, the LDA functional was used, and same values about energy cutoff and k-point
sample like finite field calculations were used.

The electronic structure, the Born effective charges and optical properties of CsGeX3 (X=Cl, Br, I) were also evaluated using the
CASTEP code [89]. During the calculation, the GGA-PBE functional [90], and the NCP-type pseudopotentials [91,92] were adopted.
The kinetic energy cutoffs were set as 830 eV for CsGeCl3, and 440 eV for CsGeBr3 and CsGeI3 compounds. The k-point meshes were
set as 6×6×6 for these compounds. The refractive indices, the birefringence, and the nonlinear optical coefficients are obtained
using the method described in Ref. [93], Ref. [94], and Ref. [101].

3. Results and discussions

3.1. The electronic structures and the lone pair electrons

Using the method described above, the band structures, the projected density of states (PDOS), and the electron structures of
CsGeX3 (X=Cl, Br, and I) were obtained. The obtained band structures of CsGeX3 (X=Cl, Br, and I) are shown in Fig. 1. As shown in
Fig. 1, all of these compounds are direct bandgap compounds whose maximum valence band and minimum conduction band are all
located at the Z point. The obtained bandgaps of CsGeX3 (X=Cl, Br, and I) compounds are 1.95, 1.27, and 0.80 eV, respectively. The
obtained bandgaps are all smaller than that of experimental values. The underestimation of the bandgaps may have relation with the
derivative discontinuity of the exchange-correlation energy [1,95,96].

The obtained projected densities of states (PDOS) are also shown in Fig. 1. As shown in Fig. 1, these compounds own similar
projected densities of states. Take CsGeCl3 for example. For CsGeCl3 compound, the localized Cs-p states are found nearby -8.2 eV,
indicating its ionic characters. The hybrid Ge sp – Cl p states are found at the top of the valence band (from −8.5 eV to the Fermi
level), indicating the covalent interaction between germanium and halogen atoms. The hybrid states from the cesium, germanium
and halogen atoms are also found at the bottom of the conduction bands. It is well known that the optical properties have relation
with the electron transition among the states at the top of the valence band and the bottom of the conduction band
[40,50,58,97–103], hence one can deduce that polyhedron containing germanium and halogen atoms would give main contribution
to the linear and nonlinear optical properties of CsGeX3 (X=Cl, Br, and I) compounds.

It is interesting to note that, for the CsGeCl3 compound, the hybrid Ge s-Cl p states are found at the energy region (-8.5, -7) eV
which is the bonding stats of Ge-Cl chemical bond, and the hybrid Ge sp – Cl p states are found at the energy region (-5, 0) eV which is
coming from the interaction between the antibonding states of Ge s-Cl p and the Ge p states. Similar hybrid states from the ger-
manium and halogen atoms can also be found in other CsGeX3 (X=Br, I) compounds (shown in Fig. 1). According to the revised
model about the formation of the lone-pair electrons in post transition-metal atoms [104–106], the authors believe that the ger-
manium sp – halogen p states nearby the Fermi level would own the electron density distribution like lone-pair electrons. The states
nearby the Fermi level are shown in Fig. 2. It clearly shows the lobe-like lone pair electrons. The lone pair electrons around the
germanium make the germanium-halogen polyhedron distorted, which would play an important role in determining the linear and
nonlinear optical response under the external photoelectric field. The distorted germanium-halogen polyhedrons are further shown in
Fig. S1 in supporting information (SI).
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3.2. The refractive indices, birefringence and the Born effective charges

Using the method described above, the macroscopic polarization under different external electric field was obtained. The re-
fractive indices along different optical principle axis can be obtained using the equation about the first order linear optical term of the
macroscopic polarization ( = ∑P χ Ei j ij j

(1) ) and ( = +n πχ1 4i ii ) [79,80]. The obtained refractive indices and the birefringence are
shown in Table 1. For comparison, the refractive indices and birefringence of CsGeX3 (X=Cl, Br, and I) are also obtained using
density functional theory implemented in the CASTEP code. As shown in Table 1 and Fig. 3, the refractive indices and birefringence
obtained from the finite-field methods implemented in ABINIT code [84–86] are similar with the one obtained using the CASTEP
code [89]. One can also find out that although the birefringence of these CsGeX3 (X=Cl, Br, and I) compounds are relative small, but
they own relative small refractive indices dispersion which would make these compounds meet the phase-matching conditions.
Actually these compounds are all phase matchable [66,67].

To better understand the atomic contribution to the refractive indices and the birefringence, the Born effective charges have also
been calculated. More details about the Born effective charges can be found in Ref. [1], and Ref. [107]. The obtained Born effective
charges are listed in Table 2 and Table S1 in SI. For CsGeX3 (X=Cl, Br, and I) compounds crystallized into the 3m point group, the
polarization of the ordinary light is in the xy plane, and the polarization of the extraordinary light is in the z axis. As shown in Table 2,
for the alkali metal atoms, the Born effective charges in xy plane are similar with the Born effective charges along Z axis. The
difference of the Born effective charges along the direction of no and ne (Δq(Born)) is very small (from 0.008 to 0.03 for CsGeX3

compounds), implying the alkali metal atoms give relative small contribution to the birefringence. For the germanium and halogen
atoms, as shown in Table 2 and Table S1 in SI, the Born effective charges in xy plane are larger than the Born effective charges along
the z axis, indicating these atoms give positive contribution to the birefringence. The positive contribution from the germanium and

Fig. 1. The obtained band structures and the projected density of states (PDOS) of CsGeX3 (X=Cl, Br, and I) compounds using the DFT method.
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halogen atoms may have relation with the covalent interaction between the germanium and halogen atoms, and the distorted
polyhedron induced by the lone pair electrons around the germanium atoms.

3.3. The SHG response and the atomic contributions

For the CsGeX3 (X=Cl, Br, and I) compounds crystallized in 3m point group, there are three different independent nonzero SHG
tensors: d15, d22, and d33. Hence the second term of the macroscopic polarization can be expressed as:

= −P χ E E χ E E2 21
(2)

15 3 1 22 1 2 (2)

Fig. 2. The lobe-like electron density found in the orbitals nearby the fermi level of CsGeX3 (X=Cl, Br, and I) compounds.
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Table 1
The obtained refractive indices, birefringence and nonlinear optical coefficients using different methods.

CsGeCl3 CsGeBr3 CsGeI3

finite field no 1.927 2.219 2.575
ne 1.884 2.193 2.549
Δn 0.043 0.026 0.026

DFT no 1.912 2.174 2.545
ne 1.867 2.133 2.516
Δn 0.045 0.040 0.029

finite field d15 3.569 15.506 67.735
d22 −0.412 −7.917 −46.865
d33 8.502 20.968 31.548

DFPT d15 5.391 21.313 177.244
d22 1.468 13.080 110.600
d33 10.633 25.295 5.558

Fig. 3. The obtained refractive indices and birefringence using the DFT methods.
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= − + +P χ E χ E χ E E22
(2)
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In which the P1
(2), P2

(2), and P3
(2) are the macroscopic polarization along x, y, and z axes, and the E1, E2, and E3 are the external

electric field along x, y, and z axes, the χ15= 2d15, χ22= 2d22, and χ33= 2d33 are the SHG coefficients tensors. The obtained SHG
tensors are also shown in Table 1. For comparison, the SHG tensors are also obtained using the DFPT methods. As shown in Table 1,
the obtained SHG are in excellent agreement with the first principles results.

In order to analyze the atomic contribution to the second order nonlinear optical coefficients, the atomic charges and the variation
of the atomic charge (ΔQ) were calculated using the finite-field method. The variation of the atomic charge ΔQ are the difference of
the atomic charges when the external electric field was changed as 0.00001 atomic unit (a.u.). The obtained ΔQ values are shown in
Table 3. As shown in Table 3, for these CsGeX3 (X=Cl, Br, and I) compounds, the alkali metal atoms own the smallest ΔQ values,
which indicates these atoms give very little contribution to the total nonlinear optical response, while the germanium atoms and the
halogen atoms own relative large ΔQ values (especially for the halogen atoms) which indicates these atoms give main contribution to
the nonlinear optical response under the external electric field.

To further investigate the atomic contribution to the nonlinear optical response, a SHG-density technique are adopted. The SHG-
density method was used to visualize the states relevant to the SHG in real space [108]. It was performed by using the effective SHG
of each band as weighting coefficient to sum the probability densities of all occupied or unoccupied states [108]. More details about
the SHG-density method can be seen in Ref. [108]. The total SHG coefficients are divided into the contribution of virtual-electron,
and virtual-hole processes. The SHG-density method can give the atomic contribution from the virtual-electron occupied (marked as
veocc), the virtual-electron unoccupied (marked as veunocc), the virtual-hole occupied (marked as vhocc) and the virtual-hole
unoccupied (marked as vhunocc) processes. Generally speaking the veocc and vhunocc process give main contribution to the total
SHG response, hence herein the authors would just show the SHG density from the veocc and vhunocc process. The obtained SHG
density of CsGeX3 (X=Cl, Br, and I) compounds are shown in Fig. 4 (for CsGeCl3) and Figure S2 (for CsGeBr3) and Figure S3 (for
CsGeI3) in SI. In Figs. 4, S2 and S3, the color part represents the SHG density from the veocc process, and the white-black part
represents the SHG density from the vhunocc process. As shown in Figs. 4, S2, and S3, the SHG density are mainly on the germanium
and halogen atoms, indicating the germanium and halogen atoms give main contribution to the total SHG response.

4. Conclusions

In this paper, the linear and second order nonlinear optical properties of CsGeX3 (X=Cl, Br, and I) compounds have been
investigated using the finite field method combined with the density functional investigation. The obtained results are in good
agreement with the experimental values. The electron density distribution nearby the fermi level is the lobe-like lone pair electrons
which make the germanium-halogen polyhedron distorted. The Born effective charges analysis shows that the cesium give little

Table 2
The obtained diagonal tensor of atomic Born effective charges of CsGeX3 (X=Cl, Br, and I) compounds. More details about the Born effective
charges of CsGeX3 (X=Cl, Br, and I) can be found in Table S1 in SI.

Compounds Atoms qxx qyy qzz Δq(Born)

CsGeCl3 Cs 1.12383 1.12383 1.11552 0.00831
Ge 3.05867 3.05867 2.69519 0.36348
Cl1 −0.94109 −1.84724 −1.27024 0.32915
Cl2 −1.62070 −1.16763 −1.27024 0.10261
Cl3 −1.62070 −1.16763 −1.27024 0.10261

CsGeBr3 Cs 1.13943 1.13943 1.11047 0.02896
Ge 3.36581 3.36581 2.90198 0.46383
Br1 −0.90513 −2.09837 −1.33748 0.43235
Br2 −1.80006 −1.20344 −1.33748 0.13404
Br3 −1.80006 −1.20344 −1.33748 0.13404

CsGeI3 Cs 1.12719 1.12719 1.09251 0.03468
Ge 3.80943 3.80943 3.12286 0.68657
I1 −0.94299 −2.34809 −1.40513 0.46214
I2 −1.99682 −1.29427 −1.40513 0.11086
I3 −1.99682 −1.29427 −1.40513 0.11086

Table 3
The obtained variation of atomic charges (ΔQ, ×10−5) of CsGeX3 (X=Cl, Br, and I) under external electric field [111].

Cs Ge X1 X2 X3

CsGeCl3 0.002 0.782 0.705 3.074 0.307
CsGeBr3 0.003 1.276 0.817 3.185 0.255
CsGeI3 0.004 1.782 0.722 2.498 0.140
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Fig. 4. The obtained SHG density of CsGeCl3 compounds.
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contribution to the optical anisotropic birefringence, and the germanium and halogen atoms give main contribution to the total
birefringence. The analysis using the variation of atomic charges and the SHG density methods shows that the germanium and
halogen atoms give main contribution to the SHG response.
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