Non-centrosymmetric BaNaP₃O₉ with a short deep-ultraviolet cutoff edge

Xuefang Lu a, b, Ronglan Wu b, Qun Jing c, Wenqiang Chen a, b, Yunjing Shi d, Xiaoyu Dong d, **, Ming-Hsien Lee e, Zhao-hui Chen a, b, c

a Physical and Chemical Detecting Center, Xinjiang University, 666 Shengli Road, Urumqi 830046, China
b College of Chemistry and Chemical Engineering, Xinjiang University, 666 Shengli Road, Urumqi 830046, China
c College of Physical Science and Technology, Xinjiang University, 666 Shengli Road, Urumqi 830046, China
d Department of Physics, Tamkang University, New Taipei City 25137, Taiwan

corresponding author.

Abstract

A new nonlinear optical (NLO) material, namely, BaNaP₃O₉ was synthesized by high temperature solution method using PbO as the flux. Crystal of BaNaP₃O₉ with the non-centrosymmetric F₂Z₂¹ space group displays a novel topological three dimensional (3D) structure with tremendous [Ba₄Na₄O₄₀]₁₆-membered ring (16-MR) composed by the BaO₈, NaO₆ polyhedra, which alternately connected each other by sharing two oxygen atoms. The phosphate compound has a short deep-ultraviolet (deep-UV) cut-off edge about 177 nm and shows a second harmonic generation (SHG) response (0.3 × KDP). Some related optical properties and electronic structures derived from first-principles calculations, were explored.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Nonlinear optical (NLO) materials usually play significant roles in modern manufacturing, laser medical treatment, communications, as well as fundamental research in deep-ultraviolet (deep-UV) region (below 200 nm) [1–6]. However, exploration of deep-UV NLO materials is a great challenge because of the extremely rigorous prerequisites: large second harmonic generation (SHG) response (>1 × KDP), excellent chemical stability and rigorous wide band gap etc. (>6 eV). In the past decades, scientists almost exclusively searched for new deep-UV NLO materials in the borates system, as the π-conjugated B–O groups have both relatively large microscopic SHG coefficients and good deep-UV transparency [7]. The known borates include KBe₂BO₃F₂ (KBBF) [8,9], K₂B₂O₆Cl [10], Ba₂B₁₁O₂₃F [11], Li₃Sr(BO₃)₂ [12], NaBeB₄O₆ [13], Na₂CsBe₂B₂O₁₅ [14], LiNa₃Be₂B₁₂O₃₃ [15], Li₃B₂O₇F₂ [16], Pb₂Ba₂(BO₃)₂Cl [17], Ba₃B₂O₇F₂ [18], and so forth. Meanwhile, similar to the planar [BO₃]²⁻ anionic group, the π-conjugated structural units of [CO₃]²⁻ and [NO₃]⁻ were also introduced to design deep-UV NLO materials, such as Sr₂(OH)₃NO₃ [19], Na₂Lu(CO₃)₂F₂ [20], RbMgCO₃F [21], and Ca₂Na₃(CO₃)₂F [22], which broadened the research area of deep-UV NLO materials. In the nearly two years, Pan et al. introduced the BO₃xF₆ (x = 1, 2, and 3) units into borates and synthesized a series of new beryllium-free fluorooxoborates, AB₄OₓFₙ (A = NH₄⁺, K⁺, Rb⁺, and Cs⁺) [23–25], and very recently, an asymmetric alkaline-earth fluorooxoborate SrB₂O₃F₃ has been synthesized with unprecedented [B₂O₃F₃]⁻ functionalized chromophore [26], and Lin et al. also found two non-centrosymmetric alkaline earth fluorooxoborates M₂B₁₀O₁₄F₆ (M = Ca, Sr) as promising next-generation deep-UV NLO materials [27]. However, KBBF is still the sole practically usable deep-UV material to date [9]. Unfortunately, KBBF is not only difficult to grow large size single crystal but also high-toxicity due to BeO as the reactant, which limits its applications owing to difficulties in processing [28]. Hence, it is still a challenge to design and develop new deep-UV NLO crystal materials.

In 2013, Chen’s group reported two new deep-UV NLO phosphates Ba₃P₂O₁₀X (X = Cl, Br) [29], which made phosphate NLO materials become a research hotspot. Subsequently, a series of deep-UV NLO phosphates have been synthesized, such as...
RbBa$_2$(PO$_3$)$_5$ [30], LiCs$_2$PO$_4$ [31], LiRb$_2$PO$_4$ [32], KLa[PO$_3$]$_4$ [33], K$_2$Mg$_4$(P$_2$O$_7$)$_3$ [34], KPD$_2$(PO$_3$)$_5$ [35], RbNaMg$_2$PO$_7$ [36], CsNaMg$_2$PO$_7$ [37] and so on. Compared with borates, phosphates usually exhibit short UV cutoff edges because of only containing asymmetric PO$_4$ tetrahedra as building units. Additionally, alkali- and alkali-earth cations are conducive to deep-UV light transmission because of no d-d electrons transition [38]. Guided by above ideas, we made systematically studies on the systems of the alkali- and alkali-earth metals phosphates, and discovered a new NLO material BaNaP$_3$O$_9$. In this work, the BaNaP$_3$O$_9$ crystal was grown by high temperature solution method using PbO as the flux, which displayed a short deep-UV cut-off edge about 177 nm. Furthermore, we investigated structure-property relationships and performed a computational study on electronic structures, projected density of states (PDOS) and SHG tensors.

2. Experimental section

2.1. Solid state synthesis

Polycrystalline samples of BaNaP$_3$O$_9$ were synthesized by traditional solid-state reaction. Stoichiometric amounts of Na$_2$CO$_3$ (99.8%, Tianjin Hongyan Chemical Reagent Co., Ltd), BaCO$_3$ (99.0%, Chengdu Kelong Chemical Reagent Co., Ltd), NH$_4$H$_2$PO$_4$ (99.0%, Tiantian Zhiyuan Chemical Reagent Co., Ltd), NH$_4$H$_2$PO$_4$ (99.0%, Tiantian Zhiyuan Chemical Reagent Co., Ltd) were ground together and then packed into a porcelain crucible. The temperature was heating at 300 °C at a rate of 2 °C/min in order to avoid ejection of starting materials owing to vigorous evolution of NH$_3$. After pre-heating at 300 °C for 10 h, the sample was cooled to room temperature and ground up again. Then the reaction mixture was heated to 600 °C and held for 72 h with adequate grinding. The furnace was turned off and the sample cooled down at the rate of furnace temperature decline. Then the phase purity of BaNaP$_3$O$_9$ was obtained for the determination by powder X-ray diffraction (XRD) and other measurement.

2.2. Powder X-ray diffraction

The powder XRD data were collected at room temperature in the angular range of 2θ = 10°–70° with a scan step width of 0.02 and a fixed counting time of 1 s/step using an automated Bruker D2 X-ray diffractometer with Cu Kα radiation (λ = 1.5418 Å). The experimental XRD pattern was in agreement with the calculated one based on the single-crystal crystallographic data of BaNaP$_3$O$_9$, as depicted in Fig. S1, in the supporting information (SI).

2.3. Single crystal growth

The BaNaP$_3$O$_9$ crystals were grown by high temperature solution method using a PbO flux. A Pt crucible containing Na$_2$CO$_3$, BaCO$_3$, NH$_4$H$_2$PO$_4$ and PbO in the molar ratio of 1: 2: 6: 0.5 was placed in the center of a vertical, programmable temperature furnace was turned off and the sample cooled down at the rate of 2 °C/min under argon atmosphere.

2.4. Single-crystal X-ray diffraction

A single crystal of BaNaP$_3$O$_9$ with dimensions 0.20 mm × 0.16 mm × 0.12 mm was selected under microscope, and then glued on the end of a glass fiber for single crystal X-ray determination study. The diffraction data were collected at room temperature on a Bruker Smart APEX II single crystal diffractometer equipped with a 4 K CCD-detector (graphite Mo Kα radiation, λ = 0.71073 Å). The reduction of data were carried out with the Bruker Suite software package. The numerical absorption corrections were performed with the SADABs program and integrated with the SAINT program [11]. All calculations were performed with programs from the SHELXTL crystallographic software package [39]. The structures were examined using the Adsym subroutine of PLATON [40]. Crystallographic data and structural refinements for the title compound are summarized in Table 1. All atoms coordinates and isotropic or equivalent displacement parameters are listed in Table S1 in the SI. Selected bond distances and angles are summarized in Table S2.

2.5. Energy-dispersive X-ray spectroscopy

Elemental analysis was performed on the single crystals using a HITACHI SU8010 scanning electron microscope (SEM) with energy-dispersive spectroscopy (EDS) capabilities. The EDS spectrum indicated that the molar ratio of Ba: Na: P: O is 1: 1: 3: 9 ratio of BaNaP$_3$O$_9$. The molar ratio was coincided with the stoichiometric one very well. (Fig. S3).

2.6. Thermal properties analysis

Thermal gravimetric (TG) and differential scanning calorimetry (DSC) were conducted on a HITACHI STA 7300 thermal analyzer instrument. The crystal sample (5–10 mg) was enclosed in Al$_2$O$_3$ crucible and heated from 30 to 1000 °C at a rate of 10 °C/min under argon atmosphere.

2.7. Infrared spectrum

The infrared (IR) absorption spectrum of BaNaP$_3$O$_9$ was recorded on the SHIMADZU IRAffinity-1 Fourier transform IR spectrometer with a resolution of 2 cm$^{-1}$ in the range of

<table>
<thead>
<tr>
<th>Table 1</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Table 1</strong> Crystal data and structure refinement for BaNaP$_3$O$_9$.</td>
</tr>
<tr>
<td><strong>Empirical formula</strong></td>
</tr>
<tr>
<td><strong>Formula weight</strong></td>
</tr>
<tr>
<td><strong>Temperature (K)</strong></td>
</tr>
<tr>
<td><strong>Wavelength (Å)</strong></td>
</tr>
<tr>
<td><strong>Space group</strong></td>
</tr>
<tr>
<td><strong>a/Å</strong></td>
</tr>
<tr>
<td><strong>b/Å</strong></td>
</tr>
<tr>
<td><strong>c/Å</strong></td>
</tr>
<tr>
<td><strong>Volume/Å$^3$</strong></td>
</tr>
<tr>
<td><strong>Z</strong></td>
</tr>
<tr>
<td><strong>μ/μm$^{-1}$</strong></td>
</tr>
<tr>
<td><strong>F(000)</strong></td>
</tr>
<tr>
<td><strong>Crystal size/mm$^3$</strong></td>
</tr>
<tr>
<td><strong>Theta range for data collection</strong></td>
</tr>
<tr>
<td><strong>Limiting indices</strong></td>
</tr>
<tr>
<td><strong>Reflections collected/unique</strong></td>
</tr>
<tr>
<td><strong>Completeness to theta = 27.53°</strong></td>
</tr>
<tr>
<td><strong>Data/restraints/parameters</strong></td>
</tr>
<tr>
<td><strong>Goodness-of-fit on F$^2$</strong></td>
</tr>
<tr>
<td><strong>Final R indices [F$^2$ &gt; 2σ(F$^2$)]</strong></td>
</tr>
<tr>
<td><strong>R indices (all data)</strong></td>
</tr>
<tr>
<td><strong>Absolute structure parameter</strong></td>
</tr>
<tr>
<td><strong>Largest diff. peak and hole/e Å$^{-3}$</strong></td>
</tr>
</tbody>
</table>

* R$_1 = \sum||F_{o}||-|F_{c}||/\sum|F_{o}|$ and wR$_2 = [\sum w(F^2 - F^2) / \sum w(F^2)]^{1/2}$ for F$^2 > 2\sigma(F^2)$. 

400–4000 cm\(^{-1}\). The sample for this study was from ground polycrystalline material that was pressed into discs with KBr.

### 2.8. UV–Vis–NIR diffuse reflectance spectroscopy

The UV–Vis–NIR diffuse reflectance spectrum of BaNaP\(_3\)O\(_9\) was recorded by a SolidSpec-3700UV spectrophotometer in the wavelength range from 190 to 1000 nm with a scan step width of 2 nm at room temperature. The deep-UV diffuse reflectance spectrum of the crystal was recorded in an atmosphere of flowing nitrogen using a Shimadzu 3700UV spectrophotometer in the wavelength range of from 175 to 220 nm with a scan step width of 0.1 nm in the low temperature condition. Reflectance spectrum was converted to absorbance spectrum using the Kubelka-Munk function [41].

### 2.9. SHG measurements

The SHG measurement of BaNaP\(_3\)O\(_9\) powder was investigated using a modified Kurtz-Perry system [42] with Q-switched Nd:YAG lasers under the wavelength of 1064 nm. A detailed description of the sample for this study was from ground polycrystalline material that was pressed into discs with KBr.

### 2.10. Structure–property relationships

To better understand the structure–property relationship of BaNaP\(_3\)O\(_9\), we calculated the local dipole moments in the individual asymmetric polyhedra by using a bond-valence method [45]. The well-known Debye equation, \(\mu = ne\bar{r}\) (\(\mu\) is the net dipole moment in Debye, \(n\) the total number of electrons, \(e\) the charge on an electron, \(\bar{r}\) the difference), was used to calculate the local dipole moments of individual BaO\(_8\), NaO\(_6\) and PO\(_4\) polyhedra.

### 2.11. Numerical calculation details

The density functional theory (DFT) calculations were performed using the CASTEP code [46,47] to calculate the electronic structures and optical properties. During the calculation, the generalized gradient approximation (GGA) with Perdew-Burke-Ernzerhof (PBE) functional was adopted [48]. Under the norm-conserving pseudopotential (NCP) [49,50], the following orbital electrons were treated as valence electrons: Na: 2s\(^2\); 2p\(^6\); Ba: 5s\(^2\); 5p\(^6\); 6s\(^2\); P: 3s\(^3\); 3p\(^4\); O: 2s\(^2\); 2p\(^4\). The kinetic energy cutoffs of 830 eV was chosen, and the numerical integration of the Brillouin zone was performed using a \(4 \times 2 \times 2\) Monkhorst-Pack k-point sampling. The other calculation parameters and convergent criteria were the default values of the CASTEP code.

The static second-order nonlinear optical coefficients were obtained using the formula as [51].

\[
\chi^{(2)}_{\alpha\beta\gamma} = \chi^{(2)}_{\alpha\beta\gamma}(VE) + \chi^{(2)}_{\alpha\beta\gamma}(VH)
\]  

In this formula the total SHG coefficient \(\chi^{(2)}\) is divided into the contribution from the virtual-electron (VE), virtual-hole (VH) processes, which are,

\[
\chi^{(2)}_{\alpha\beta\gamma}(VE) = \frac{e^2}{2\hbar m^2} \sum_p \int \frac{d^3k}{4\pi^2} P_p(a \alpha \beta \gamma) \Im \left[ p_u^a p_v^\beta p_w^\gamma \right]
\]

\[
\chi^{(2)}_{\alpha\beta\gamma}(VH) = \frac{e^2}{2\hbar m^2} \sum_{\sigma\sigma'} \int \frac{d^3k}{4\pi^2} P_p(a \alpha \beta \gamma) \Im \left[ \sigma_p^\sigma \sigma_{\sigma'}^\beta \sigma_{\sigma'}^\gamma \right]
\]

Here, \(a, \beta, \gamma\) are Cartesian components, \(v\) and \(v'\) denote valence bands, \(c\) and \(c'\) refer to conduction bands, and \(P(a \alpha \beta \gamma)\) denotes full permutation. The band energy difference and momentum matrix elements are denoted as \(\eta_{\alpha\beta}\) and \(P_{\alpha\beta}\), respectively.

### 3. Results and discussion

#### 3.1. Crystal structure

The crystal structure of BaNaP\(_3\)O\(_9\) was determined by single X-ray diffraction and it crystalizes in the orthorhombic system with space group P2\(_1\)2\(_1\)2\(_1\). The basic building units for title compound are distorted BaO\(_8\), NaO\(_6\) polyhedra and isolated [P3O\(_9\)]\(^3-\) anion circles, as illustrated in Figs. S4a–c. In the structure, NaO\(_6\) octahedra and BaO\(_8\) polyhedra alternately connect with each other to build [Ba\(_4\)Na\(_4\)O\(_{30}\)] unit forming large 16-membered ring (16-MR) (Fig. 1d), of which each BaO\(_8\) and NaO\(_6\) polyhedra are linked to each other by sharing two oxygen atoms. The adjacent [Ba\(_4\)Na\(_4\)O\(_{40}\)] building blocks are further connected by edge-sharing forming a three-dimensional (3D) topological structure in the bc-plane, which have octagonal tremendous channels (Fig. 1b). Furthermore, each two isolated [P3O\(_9\)] rings are located in related tunnel to aid charge balance along the a-axis (Fig. 1c). The OD [P3O\(_9\)]\(^3-\) rings are isolated from each other and operate themselves by the 2\(_1\)-screw axes (see Fig. 1a), which would not be good for NLO effects in BaNaP\(_3\)O\(_9\).

In BaNaP\(_3\)O\(_9\), the Ba–O bond lengths in BaO\(_8\) polyhedra range from 2.656 (3) to 3.045 (3) Å. The Na atom is coordinated with six oxygen atoms to construct the NaO\(_6\) octahedron, in which the bond lengths vary between 2.314 (3) and 2.589 (3) Å. Additionally, all P atoms exhibit 4-coordinate environment with P–O–P linkages are in the range of 101.0 (6)(14)\(^\circ\)–120.55 (16)\(^\circ\). Bond valence sums (BVS) [52,53] for all atoms were analyzed and the total bond valences of BaNaP\(_3\)O\(_9\) for Ba (1), Na (1), P (1)–P (3), and O (1)–O (9) are 2.145, 2.030, respectively, which are consistent with their valence states (Table 2).

#### 3.2. Thermal properties analysis

The TG/DSC curves of the BaNaP\(_3\)O\(_9\) were shown in Fig. 2. On the DSC curve, the BaNaP\(_3\)O\(_9\) exhibits an endothermic peak on their heating cycle, around 705 °C and no exothermic peak was in their cooling cycles. The remnants after TG/DSC measurement were transparent glass, which suggested the melt for BaNaP\(_3\)O\(_9\) possessed very high viscosity and didn’t crystallized during cooling process. In order to confirm the melting behavior of BaNaP\(_3\)O\(_9\), the full phase powders of BaNaP\(_3\)O\(_9\) were put in a platinum crucible, heated to 750 °C, and then cooled slowly to room temperature at 2 °C/h. Analysis of the powder XRD pattern (as shown in Fig. 3) of the solidified matter revealed that BaNaP\(_3\)O\(_9\) melts congruently.
3.3. IR spectrum

The IR spectrum of BaNaP₃O₉ was measured at room temperature and was shown in Fig. S5 exhibiting the following absorption peaks. The intense peaks around 1288, 1222 cm⁻¹ are assigned to the asymmetrical stretching vibration of OₚₑO, and peaks between 1010 and 1161 cm⁻¹ are attributed to the symmetrical stretching vibration of OₚₑO [33]. The sharp and intense peak at 860 cm⁻¹ belongs to the asymmetrical stretching vibration of PₑOₑP [32]. Several peaks between 686 and 756 cm⁻¹ are responsible for the symmetrical stretching vibration of PₑOₑP, and the bands around 509 cm⁻¹ may be owing to the fundamental frequency of the PO₄ units [54]. The IR spectrum further confirmed the existence of the PO₄ units, which is consistent with the result obtained from the single crystal XRD.

3.4. UV–Vis–NIR diffuse-reflectance spectroscopy

Polycrystalline powers of BaNaP₃O₉ have a short deep-UV cutoff edge below 190 nm as determined on a SolidSpec-3700DUV spectrophotometer in the wavelength range from 190 to 1000 nm. As can be seen from Fig. S6, the reflectance at 190 nm is nearly 70%, indicating that the cutoff edge of BaNaP₃O₉ well below 190 nm. In order to investigated the deep-UV absorption, additional measurements were performed on the low temperature condition of flowing nitrogen atmosphere, from 170 to 220 nm. The deep-UV reflectance spectrum indicated that the cutoff edge of the crystal was about 177 nm and the experimental band gap value of the crystal was 7.0 eV, as shown in Fig. 4.

3.5. SHG properties and structure-property relationships

The title compound crystallizes in space group P2₁2₁2₁. By measuring the SHG response as a function of particle size (ranging from 20 to 200 μm), we were able to estimate the powder SHG intensities. We determined that BaNaP₃O₉ exhibits SHG efficiency approximately 0.3 times that of KDP in the same particle size range of 150–200 μm (Fig. S7).

As seen in Table 3, the condensation of P–O groups from [P₂O₇]₄⁻ dimers and [P₃O₁₀]₅⁻ trimers to [PO₃]∞ infinite chains is favorable for the generation of a more pronounced SHG response for deep-UV phosphates. K₄Mg₄(P₂O₇)₃, Rb₄Mg₄(P₂O₇)₃, RbNaMgP₂O₇, CsNaMgP₂O₇, CsLiCdP₂O₇, Ba₅P₆O₂₀, KLa(PO₃)₄ and RbBa₂(PO₃)₅.

![Fig. 1. The crystal structure of BaNaP₃O₉: (a) The arrangement of the [P₃O₉]³⁻ anion group in the bc plane. (b) 3D topological structure extending in the bc plane. (c) 3D framework along the a axis. (d) [Ba₄Na₄O₄₀] 16-MR.](image-url)

![Fig. 2. TG and DSC curves for BaNaP₃O₉.](image-url)

<table>
<thead>
<tr>
<th>Table 2 Bond valences analysis of BaNaP₃O₉</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atom</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>O1</td>
</tr>
<tr>
<td>O2</td>
</tr>
<tr>
<td>O3</td>
</tr>
<tr>
<td>O4</td>
</tr>
<tr>
<td>O5</td>
</tr>
<tr>
<td>O6</td>
</tr>
<tr>
<td>O7</td>
</tr>
<tr>
<td>O8</td>
</tr>
<tr>
<td>∑ Cations</td>
</tr>
</tbody>
</table>
have relatively large number density of PO₄ tetrahedra in per unit volume and have conspicuous SHG efficiency (1.3×, 1.4×, 1.5×, 1.1×, 1.5×, 0.8×, 0.7×, and 1.4× KDP, respectively). In comparison with these compounds, the number density of PO₄ tetrahedra of BaNaP₃O₉, in per unit volume, is just below that of the Rb₄Mg₄(P₂O₇)₃, CsNaMgP₂O₇ and KLa(PO₃)₄ compounds. However, the title compound displays weak SHG.

In order to investigate the relationship between the functional units and the SHG response, the dipole moments of BaO₈, NaO₆, and PO₄ polyhedra were calculated using the Debye equation. The calculated results are summarized in Table S3. The magnitude of dipole moments of each BaO₈ polyhedron is 4.06 D. The magnitude of dipole moments of each NaO₆ octahedron is 3.73 D. The magnitudes of dipole moments of each P (1) O₄, P (2) O₄, and P (3) O₄ tetrahedra are 4.55 D, 4.22 D, and 3.45 D, respectively. As described in Fig. 5, in the unit cell of BaNaP₃O₉, there are four Ba₁ atoms, four Na₁ atoms, four P₁ atoms, four P₂ atoms and four P₃ atoms. Unfortunately, each of the two corresponding atoms formed a nearly mirror plane symmetrical arrangement, which operated by the 2₁-screw axes. Therefore, the basic building units in crystals do not arrange in alignment, making them unable to produce the optimal contribution to the SHG response.

### 3.6. Electronic structure and the calculated optical properties

Using the method described above, the electronic structures and the optical properties of BaNaP₃O₉ were obtained. As shown in Fig. 6a, BaNaP₃O₉ is a compound with direct transition bandgap 5.58 eV. The underestimation of the bandgap comparing with the experimental result obtained from UV–Vis–NIR diffuse-reflectance spectroscopy has relation with limitation of the DFT method [55,56]. To better understand the interaction among different atoms, the PDOSs were also obtained (shown in Fig. 6b). It clearly shows that the hybrid O-p and P-p states were found at the top of the valence bands (in the energy region from −10 eV to the Fermi level), implying the covalent bond character of the P–O chemical bonds. The interaction between the Ba and O atoms are also found in the energy region nearby −10 eV, while the states from the Na atoms are not found at the top of the valence band (deep in the valence band, not shown in Fig. 6b), implying the ionic character of Na atoms. It is well known that the optical properties have relation with the optical transition among the states nearby the Fermi level.

<table>
<thead>
<tr>
<th>material</th>
<th>P–O groups</th>
<th>cutoff edge (nm)</th>
<th>Number Density of PO₄ Tetrahedra (×10⁻³)</th>
<th>SHG response (×KDP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>K₄Mg₄(P₂O₇)₃ [34]</td>
<td>[P₂O₇]₄⁻ dimer</td>
<td>170</td>
<td>11.58</td>
<td>1.3</td>
</tr>
<tr>
<td>Rb₄Mg₄(P₂O₇)₃ [34]</td>
<td></td>
<td>&lt;200</td>
<td>22.09</td>
<td>1.4</td>
</tr>
<tr>
<td>CsNaMgP₂O₇ [37]</td>
<td></td>
<td>185</td>
<td>13.84</td>
<td>1.5</td>
</tr>
<tr>
<td>CsNaMgP₂O₇ [37]</td>
<td></td>
<td>180</td>
<td>15.79</td>
<td>1.1</td>
</tr>
<tr>
<td>CsLiCdP₂O₇ [57]</td>
<td></td>
<td>&lt;200</td>
<td>11.24</td>
<td>1.5</td>
</tr>
<tr>
<td>BaNaP₂O₉</td>
<td>[P₂O₇]₃⁻ trimer</td>
<td>177</td>
<td>15.35</td>
<td>0.3</td>
</tr>
<tr>
<td>Ba₃P₂O₁₀Br [29]</td>
<td>[P₂O₁₀]⁺ trimer</td>
<td>&lt;200</td>
<td>8.76</td>
<td>0.5</td>
</tr>
<tr>
<td>Ba₃P₂O₁₀Cl [29]</td>
<td></td>
<td>180</td>
<td>10.61</td>
<td>0.6</td>
</tr>
<tr>
<td>Ba₃P₂O₁₀Cl [29]</td>
<td></td>
<td>167</td>
<td>14.33</td>
<td>0.8</td>
</tr>
<tr>
<td>CsLiCdP₂O₇ [57]</td>
<td></td>
<td>&lt;200</td>
<td>11.24</td>
<td>1.5</td>
</tr>
<tr>
<td>K₄Mg₄(P₂O₇)₃ [34]</td>
<td></td>
<td>162</td>
<td>15.76</td>
<td>0.7</td>
</tr>
<tr>
<td>KLa(PO₃)₄ [33]</td>
<td>[PO₃]₃⁺ infinite</td>
<td>167</td>
<td>11.73</td>
<td>0.9</td>
</tr>
<tr>
<td>KBa₂(PO₃)₅ [59]</td>
<td>chain</td>
<td>163</td>
<td>14.55</td>
<td>1.4</td>
</tr>
<tr>
<td>RbBa₂(PO₃)₅ [59]</td>
<td></td>
<td>163</td>
<td>14.55</td>
<td>1.4</td>
</tr>
</tbody>
</table>

![Fig. 3. Before and after melting XRD patterns of BaNaP₃O₉.](image3)

![Fig. 4. Deep-UV diffuse reflectance spectrum of BaNaP₃O₉.](image4)

![Fig. 5. Direction of the local dipole moments for BaO₈, NaO₆ and PO₄.](image5)
hence the BaO$_8$ and PO$_4$ polyhedra may give main contributions to the optical properties of the title compound.

As an acentric compound, it is interesting to investigate the second-order NLO response under the external photoelectric field. As for the space group P2$_1$2$\bar{1}$2, there is only one independent non-vanished SHG coefficients tensor $d_{14} = 1/2$ $\chi^{(2)}_{123}$. Using the method described above, the obtained SHG coefficient $d_{14}$ is 0.06 pm/V, which is about 0.15 times that of KDP. The obtained result is well agreement with the experimental result obtained by the Kurtz-Perry method.

4. Conclusions

In summary, a new NLO material, BaNaP$_3$O$_9$ was grown by high temperature solution method using PbO as the flux. The BaNaP$_3$O$_9$ is composed of 3D topological structure, which includes the great of [Ba$_4$Na$_4$O$_{40}$] $16$-MRs and the [P$_3$O$_{12}$]$^{3-}$ anion groups. Thermal behaviors indicated that BaNaP$_3$O$_9$ is a congruently melting compound and has excellently thermal stability. Moreover, the deep-UV cut-off edge of the title compound is about 177 nm. It displays powder SHG efficiency of 0.3 times that of KDP, which results from the 2$_1$-screw axes operation of the OD [P$_3$O$_{12}$]$^{3-}$ ring despite of considerable number density of PO$_4$ tetrahedra in per unit volume. The first principle calculations showed that the SHG response of BaNaP$_3$O$_9$ mainly originated from the cooperation of the P–O and Ba–O groups.

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 51462033, 51562036), the Science Research Projects in University of Xinjiang Education Department (Nos. XJEDU2017M006, XJEDU2016S006).

Appendix A. Supplementary data

Supplementary data related to this article can be found at https://doi.org/10.1016/j.jallcom.2018.06.066.

References

[23] G. Shi, Y. Wang, F. Zhang, B. Zhang, Z. Yang, X. Hou, S. Pan, K.R. Poeppelmeier,


