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We calculate the lattice properties and electronic structure of cobalt disilicide using an ab initio total-
energy method with optimized pseudopotentials. Special attention is paid to the development of a soft
robust pseudopotential for the 3d element Co. The calculated band structure of CoSi, agrees well with
the results of all-electron studies and the equilibrium lattice constant, bulk modulus, and zone-center
phonon frequencies obtained are in good agreement with experimental data.

I. INTRODUCTION

In the last decade transition-metal silicides have re-
ceived increasing attention because of their practical im-
portance as contact materials in Si electronics.! !
Cobalt disilicide crystallizes in the cubic fluorite struc-
ture; it has low resistivity and only 1.2% lattice
mismatch with silicon,'"!? so that nearly ideal interfaces
are possible in integrated Si matrices. The complicated
structures of the CoSi,/Si interfaces were determined
only recently using Z-contrast electron microscopy tech-
nique.> Both the (100)- and (111)-oriented interfaces are
characterized by complex reconstructions, making these
systems intractable for existing ab initio techniques based
on all-electron formalisms.

An alternative to a completely first-principles investi-
gation is the tight-binding (TB) total-energy study. The
TB approach utilizes the electronic structure information
from ab initio calculations, and it has been shown to de-
scribe the lattice properties of the transition-metal sili-
cides rather accurately.!® This scheme relies not only on
the computed band structure but also on the measured
lattice properties (the equilibrium lattice constant a, and
the bulk modulus B) in determining the TB parameters.
Usually the experimental data required are readily avail-
able, while there might be discrepancies between the
band structures calculated using different methods. In
the case of cobalt disilicide, however, one encounters an
unexpected problem. The band structure of this com-
pound is well established by different authors using vari-
ous all-electron local-density approximation (LDA)
methods.> 713 The adequacy of the first-principles
description of the electronic structure has recently been
confirmed by positron-annihilation experiments.> At the
same time, experimental data on the lattice properties of
bulk CoSi, are largely contradictory. The lattice con-
stant is reported as either 5.365 (Ref. 11) or 5.356.'> The
bulk modulus values measured using different techniques
vary by as much as 40%. Perhaps the most accurate re-
sult, B=169+5, was obtained from the measurement of
ultrasonic wave velocities.” The dynamical modulus as
estimated from the acoustic-phonon dispersion curves is
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187430 GPa.® Finally, an elasticity-theory analysis of
the deformation of the CoSi, film on the Si substrate pro-
duces an even higher value of 240 GPa.* The only ab ini-
tio calculation of the bulk modulus gives 190 GPa.?

These results suggest that experimental studies of
CoSi, should be continued, particularly including an
equation-of-state (EOS) measurement, and that a com-
pletely first-principles method could be a preferred way
of treating the bulk silicides and the silicon-silicide inter-
faces. The main contender for such a study is the pseu-
dopotential total-energy method,'® but its success de-
pends crucially on the availability of transferable robust
pseudopotentials for the relevant elements.

The difficulties associated with the construction of the
soft norm-conserving pseudopotentials for 3d transition
metals have become a part of folklore in the electronic-
structure community. In our opinion this problem is
significantly less severe than commonly suggested. The
situation is reminiscent of that with pseudopotential stud-
ies of oxides, which are now routinely performed14 even
without invoking the ultrasoft-potential technique. We
would like to show in this paper that an optimized poten-
tial for Co produces accurate and rapidly convergent re-
sults for lattice properties, and it also provides sufficient
accuracy in the calculation of the one-electron properties.
The importance of the latter issue is related to the main
challenge of the future ab initio studies of the silicon-
silicide interfaces, i.e, the problem of the relation between
the local atomic structure and the Schottky barrier
height.

We present in this paper an optimization strategy for
the generation of the cobalt pseudopotential with an em-
phasis on its convergence properties. The optimization
technique and the transferability of the d-only nonlocal
pseudopotential from the atomic tests is discussed in Sec.
II. Some details of the conjugate-gradient scheme for the
total-energy calculation are described in Sec. III, together
with the results of the tests for bulk silicon and cobalt.
The calculated lattice properties of CoSi, are analyzed in
Sec. IV, where we pay special attention to the finite-
basis-set correction.'” Finally, we compare in Sec. V the
calculated band structure and the charge-density distri-
bution to the all-electron calculations results.
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II. OPTIMIZED PSEUDOPOTENTIAL

To generate the Co pseudopotential, we have used a
kinetic-energy-optimization scheme!®!” with a number of
modifications and enhancements.!® In our scheme only
three spherical Bessel functions are used to expand the
pseudo-wave-functions in the core region. The optimal
expansion coefficients are obtained under the constraints
of norm conservation, and continuity of the pseudo-
wave-function and its first derivative at the core radius r..
The second and higher derivatives of the pseudo-wave-
functions are not forced to be continuous in our scheme.
This allows a more flexible optimization of the pseudo-
wave-functions, and hence a softer pseudopotential can
be obtained. The (optimization) cutoff wave vector g, is
used as a kinetic energy filter to fine-tune the character of
the pseudo-wave-functions, so that the pseudopotential
has the best phase shift over a range of scattering energy
which ensures its transferability.

A slightly ionic configuration of [Ar]3d74s'4p%?° was
used to generate s, p, and d semilocal potentials for Co,
with 7$=2.0, r?=2.0, rf=2.4, and ¢:=2.70, ¢g*=4.39,
¢8=5.48 (all in atomic units).

The advantage of the above strategy is that not only
can we generate a very soft d potential for Co, but we can
also take advantage of the g.-tuning procedure to control
the shape of the noncritical s and p potentials in such a
way that these two potentials become very similar to each
other. When a mixture of these potentials is chosen as
the local potential, the corresponding nonlocal com-
ponents become small, and both can be discarded without
sacrificing the accuracy of the potential. This provides a
significant saving in memory and computation time.
Indeed, it has been noticed'®?° that in order to use
Kleinman-Bylander?! separable nonlocal pseudopoten-
tials for transition metals one must choose the s potential
as local, which results in eight projectors to be evaluated
(three for p and five for d). In our case of Co, there are
only five nonlocal projectors in the potential because we
have found a local potential capable of representing both
s and p scattering. Detailed discussion of the
pseudopotential-generation procedure and test results for
a r%lélmber of transition metals will be published separate-
ly.

We have tested three Kerker?? pseudopotentials for Si
that were generated using pd, sp, or s-only nonlocal pro-
jectors, with the local components chosen as s, d, and p
projectors, respectively. It might seem that the Si poten-
tial should not present a problem in this study in view of
the variety of successful simulations of Si and Si-
containing systems.”> However, the majority of the pre-
vious pseudopotential calculations that utilized the Si po-
tential have been performed for systems composed of sp
elements only. Thus, the importance of the correct
description of the d scattering for the current investiga-
tion remains to be established. The results of calculations
for Co, Si, and CoSi, are given in the following sections.

III. TOTAL-ENERGY PSEUDOPOTENTIAL METHOD

The LDA calculations were performed using the
CASTEP (Cambridge Serial Total Energy Package) com-
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puter code. The basic idea of the underlying method"® is
to solve the Kohn-Sham equations by minimizing the
total-energy functional rather than by diagonalizing the
Hamiltonian matrix. We use a plane-wave basis to ex-
pand the wave functions; the band-by-band minimiza-
tion’* is achieved by the preconditioned conjugate-
gradient search in the space of the expansion
coefficients.!* The ion-electron interaction is represented
by - nonlocal pseudopotentials in Kleinman-Bylander
form.?! The exchange-correlation potential due to Ceper-
ley and Alder is employed as parametrized by Perdew
and Zunger.”® The main features of the method are de-
scribed extensively by Payne et al.,'> so we address here
only those points that are relevant to the particular study
and have not received sufficient attention in the review
paper.!?

The Brillouin-zone (BZ) integration is performed in
CASTEP using the special points scheme. The quality of
the reciprocal-space sampling becomes a secondary con-
sideration in the study of complex systems with hundreds
of atoms per supercell because of the small volume of the
BZ.2 Moreover, such calculations are mainly performed
for semiconducting systems where sufficient accuracy can
be achieved by employing very moderate k-point sets,
usually by taking just one k point in the case of the larg-
est systems currently studied using ab initio methods.
Metallic systems with small unit cells, like the one con-
sidered in this paper, have to be treated more carefully by
using a denser mesh of k points in the BZ. For example,
the all-electron calculations for CoSi, required from 28 to
505 points in the irreducible part of the BZ, depending on
the desired accuracy of the tetrahedron integration
scheme.>®° The conjugate-gradient technique would not
be worth using if such a high density of k points were re-
quired.

In order to reduce the number of sampling points we
use the energy-level smearing technique as suggested by
Fu and Ho,?* and modified by Needs, Martin, and Niel-
sen.?’ This method has an advantage of introducing the
energy functional that is variational with respect to the
wave-function coefficients,”’ and converges rapidly with
the number of k points used. The only drawback is that
the functional depends on the smearing width o. The
usual procedure is to decrease ¢ in order to estimate the
limit of E, (0 =0).273° We employed the so-called en-
tropy correction term to the energy functional? that al-
lows the accurate evaluation of the total energy while us-
ing the values of o of order of 1 eV, as compared to the
more traditional range of 0.01-0.1 eV.?%3% This scheme
with 0=0.5 eV produces the total energy of CoSi, that
differs by less than 1 meV from the E, (0=0). The
functional calculated using the entropy correction
scheme can be shown to be accurate to at least O(c?).?°
However, the smearing scheme with the entropy correc-
tion introduces an additional contribution to the
Hellmann-Feynman forces. For this reason we chose to
reduce the smearing width further to 0.1 eV for the
frozen-phonon calculations, where we used both the
total-energy and ionic forces to evaluate the phonon fre-
quencies. We will show that the entropy-corrected
smearing scheme is sufficiently accurate when using ten
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(g=4) or even two (¢ =2) special points in the irreduc-
ible part of the BZ of CoSi,, where g is the parameter
that determines the number of Monkhorst-Pack special
points.’!

The self-consistent conjugate-gradient minimization in-
cludes an additional step in the case of the metallic sys-
tem as compared to an insulator or a semiconductor. At
the end of each self-consistency iteration we use the up-
dated energy eigenvalues to calculate the new Fermi ener-
gy. This value of E is used to recalculate the occupation
numbers and all related properties, e.g., the charge densi-
ty. Furthermore, it is only at this stage that we sym-
metrize the charge density.>> One might expect such a
procedure to lead to an instability during the conjugate-
gradient steps that change the charge density without
preserving its correct symmetry. We find, however, that
it is sufficient to introduce mixing of the input and output
charge densities at the first few iterations to guarantee
stable convergence. No mixing is required when the
charge density is reasonably close to the ground-state
density.

Finally, we use CASTEP to calculate the band structure
at arbitrary points in the BZ using the self-consistent
charge density generated using the set of the special k&
points.’! The eigenvalues of the states in the conduction
band cannot be obtained from a self-consistent CASTEP
run, because the empty states do not contribute to the
total-energy functional and so cannot be treated varia-
tionally. In the spirit of the iterative approach, we find
the eigenvalues wusing the same preconditioned
conjugate-gradient scheme as for the total-energy minim-
ization. The difference is that now we minimize the ex-
pectation value of the Hamiltonian for the wave function
of the given band, i.e., the eigenvalue itself. This results
in the different expression for the optimal step along the
conjugate-gradient direction, and also simplifies the pro-
cedure by eliminating the self-consistency loop. The
same constraint of orthogonality of the wave function is
used as in the total-energy minimization. The subspace
rotation of the wave functions'? is not, strictly speaking,
necessary when using a Gram-Schmidt orthogonalization
to the higher bands, but we found that it increases the
convergence rate.

Now we will discuss briefly the results for the lattice
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properties and band-structure calculations for the pure
elements Si and Co. The results for the lattice properties
of Si computed with three different pseudopotentials are
shown in Table I. We performed the total-energy calcu-
lations using cutoff energies for the plane-wave expansion
E_ between 200 and 500 eV and ¢ =2, 4, and 8 sets of
special points’! in the BZ for the primitive unit cell. The
calculations for bulk Si are absolutely converged at
E.=400 eV and g =4, and the results described below
were obtained using these values.

All three pseudopotentials describe the ground-state
properties of Si reasonably well, with the sp-nonlocal
pseudopotential performing slightly less satisfactorily
than the others. Both the s-only nonlocal®*®»2¥¢ and
pd-nonlocal?®® potentials have been used successfully in
ab initio states of systems that did not contain d elements.
We chose the pd-nonlocal pseudopotential for CoSi, ex-
pecting that it would represent the d-scattering channel
in the compound more accurately. All further results
were obtained with this potential unless otherwise stated.

The EOS for Si is shown in Fig. 1 for a £10% range of
the volume change. The high degree of convergence is
reflected in the smooth character of both the E(V) and
P(V) curves, and mainly in the fact that the Murnaghan
EOS parameters for these two curves are very close
(Table I). The lattice parameter is approximately 1%
lower than the experimental value as is often the case in
the LDA calculation. The optical-zone-center phonon
frequency evaluated using the frozen-phonon approach
agrees well with experiment (Table I). The third-order
couplmg constant y for this mode was found to be —50.6
eV/A3, as compared to the experimental estimate of —47
eV/A3 or to the theoretical result of —48.4 eV/A® (both
values are taken from Ref. 34, as well as the definition of
Y).

The band energies for Si at symmetry points in the BZ
are given in Table II. We compare our results to some of
the variety of published data on the electronic structure
of Si. There is an obvious good agreement between all
sets of data, independent of the computational technique
employed. The only important difference between all the
LDA calculations and the empirical pseudopotential re-
sults** is that the LDA approach invariably underesti-
mates the energy gap. Analysis of Table II shows that

TABLE 1. Lattice properties of silicon calculated with three different pseudopotentials (see text).

Lol
for the energy and pressure are given separately.

I') is the frequency of the optic mode at the zone center. The results from the Murnaghan EOS fit

o

Potential a, (A) B (GPa) dB/dP opo(T) (cm™)

pd nonlocal From P-V 5.378 97.1 4.19
s local From E-V 5.386 96.3 4.18 498
s-only nonlocal From P-V 5.479 90.2 4.36
p local From E-V 5.483 89.9 4.30
sp nonlocal From P-V 5.331 106.4 5.0
d local From E-V 5.333 105.7 4.8

Experiment 5.429° 100.1° 4.23° 513¢

“Reference 12, extrapolated to T=0 K.

"Reference 33, elastic constants were measured at — 196 °C.

‘Reference 34.
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TABLE II. Comparison of characteristic high-symmetry states in Si. PP indicates a pseudopotential
calculation, including LDA-PP (present work). The energy values are given in eV with respect to I',s.

LAPW* LCGO® LMTO° OAPW! LDA-PP° Model PP LDA-PPE  Expt.!
r, —1202 —1220 —11.87 —11.87 —1171 —12.36 —1209 —124
s 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Ts 2.49 2.66 2.59 2.73 2.54 3.42 2.57
T, 3.18 3.05 3.11 2.99 3.42 4.10 3.57
T, 7.46 7.50 7.64 7.69 7.78
T, 7.86 7.79 8.19 7.85
X, —~784  —803  —1775 -1.77 —7.65 ~7.69 —~7.85
X, —28 =311 —272  —272 —2.77 —2.86 —2.91 —-29
X, 0.55 0.79 0.62 0.68 0.53 1.17 0.61
X, 10.32 10.11 10.10 9.95 10.07 10.19
Ly —9.64  —9.86  —9.53 —9.57 —9.55 —9.68 —9.2
L, -706  —1725 —6.93 —6.91 —6.96 —7.09 —6.5
Ly —1.16 —140  —105 —1.16 -1.23 —1.21 -12
L, 1.40 1.46 1.57 1.36 2.23 1.58
L, 3.37 3.66 3.51 3.55 4.34 3.32

2Reference 35.
"Reference 36.
‘Reference 37.
9Reference 38.
“Reference 39.

LAPW is linear augmented-plane-wave method.

LCGO is linear combination of Gaussian orbitals.

LMTO is linear muffin-tin orbital method (in atomic-sphere approximation).
OAPW is overlapping augmented-plane-wave method.

LDA pseudopotential method with the Hamiltonian diagonalization.

fReference 40. Empirical potential fitted to the experimental data.

8Present calculation.

"Experimental data from the angle-resolved photoemission, cited from Ref. 36.

our results are in better agreement with the pseudopoten-
tial calculation by Needs® than with the all-electron
data. However, this might be due simply to the fact that
the same form of the exchange-correlation potential was
used in this work as in Ref. 39. Finally, the calculated
band energies are close to the experimental estimates of
the valence-band eigenvalues as given in Ref. 36. To
summarize, both the lattice and electronic properties of

E (eV)
(2dD) d

0.90 bl PP B 10

V (A?)

FIG. 1. Equation of state for Si. The total energy is shown
by circles, the pressure by squares. Fit is the Murnaghan
analytical EOS. The total-energy scale is shifted by an arbitrary
constant.

Si are reproduced correctly by the pseudopotential used.

In order to test the Co pseudopotential we calculated
the lattice properties of fcc B-Co. This modification is
stable at temperature higher than 420°C and undergoes
martensitic transformation into hcp a-Co phase on cool-
ing.!? The cubic modification was chosen as the test ob-
ject because in this case the atomic packing is more simi-
lar to that in the cubic fluorite structure of CoSi,, and the
EOS calculations are simpler than in case of hcp symme-
try.

We used E, =500 eV and the g =8 set of special points
in all the calculations described below. The equilibrium
lattice properties of B-Co obtained from the Murnaghan
fit to the EOS are listed in Table III. The comparison

TABLE III. Lattice properties of fcc 5-Co. The results cal-
culated using the Murnaghan fit for the energy and pressure are
given separately.

ag (A) B (GPa) dB /dP
From P-V? 3.448 297+1 4.710.1
From E-V? 3.447 29542 4.3+0.4
LAPW® 3.412 284
Experiment 3.548° 212+10¢

2Present calculation.
"Reference 41.
°References 12 and 42.
dReference 42.
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FIG. 2. Band structure of B-Co along high-symmetry direc-
tions (a;=3.447 A).

with experiment might be misleading in this case, taking
into account that the fcc phase is metastable. The
lattice-constant measurements refer either to tempera-
tures above the transition point!? or to the Coy g, Feq o5 al-
loy.*? The bulk modulus is calculated using the elastic
constants measured at room temperature in the neutron-
scattering experiments on the Cog q,Fe, og alloy.*? Thus,
the usual problem of the correspondence between the
static and dynamical modulus is compounded by the
compositional dependence of B in the alloy. Having this
in mind, we expect our results to be in better agreement
with another LDA calculation*! than with the measured
data. Indeed, the theoretical lattice constant is substan-
tially shorter than the experimental value and the bulk
modulus is overestimated by 35% (Table III), but both of
these properties are in good agreement with the calculat-
ed results of Moruzzi, Janak, and Williams.*!

The band structure of 8-Co is shown in Fig. 2. It is
qualitatively similar to the results of Moruzzi, Janak, and
Williams,*! and the band energies along the high-
symmetry directions differ in these two calculations, typi-
cally by less than 0.5 eV. We obtained the valence band-
width that was 0.7 eV lower than in Ref. 41. This
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discrepancy should be attributed mainly to the difference
in the lattice constants (see Table III), and partly to the
different choice of the exchange-correlation potential.
The bandwidth calculated in this work using the lattice
constant a;=3.412 A from Ref. 41 is 0.4 eV higher than
for our calculated equilibrium lattice constant, in better
agreirlnent with the results of Moruzzi, Janak, and Willi-
ams.

IV. APPLICATION TO COBALT DISILICIDE

The fluorite lattice of CoSi, contains three atoms in the
primitive fcc unit cell, with the Co atom at the origin and
two Si atoms at ay(+1,+1,+1). In our calculations of
lattice properties we used an energy cutoff of 500 eV and
the ¢ =4 set of special points.>! Further increase of these
parameters to 600 eV and g =8 changes the total energy
by 0.5 meV, and the stress components by at most 0.1
GPa. For all practical purposes this set of parameters,
E_ =500 eV and g =4, corresponds to the fully converged
calculation. These low values are unusual for the system
containing 3d metal, and can be attributed solely to the
successful optimization of the Co pseudopotential.

The calculated lattice constant, bulk modulys, and its
pressure derivative of CoSi, are ¢;,=5.344 A, B=182
GPa, and dB /dP =4.4 (see Table IV and the correspond-
ing EOS curves, Figs. 3-6). The lattice constant is un-
derestimated by only 0.3%, which could be due to the
thermal expansion, taking into account that the experi-
mental values refer to the room-temperature measure-
ments.'"!? The calculated bulk modulus is in slightly
better agreement with the dynamical modulus measured
from the inelastic neutron scattering® than with the one
obtained from ultrasonic experiments.? The difference
between the theoretical value and these two experimental
results is —3% and + 8%, respectively, both of them be-
ing within the LDA error range. Another LDA result,
190 GPa, was obtained using the linear muffin-tin orbital
(LMTO), all-electron method.® These data strongly sug-
gest that the value of 240 GPa measured for the CoSi,

TABLE IV. Lattice properties of CoSi,. Results obtained using uncorrected and corrected equations of state for pressure and en-
ergy that were calculated using different energy cutoffs and k-point sets are given separately.

o

E.  (eV) q B (GPa) ag (A) dB/dP
Euncorr PCO\'!’ ECOI’T Euncorr Pcorr ECOrr PCO(\' ECOrr
300 4 139+93 230x10 181123 5.2 5.340 5.24 6.0t1.3 2.4+2.1
400 2 158+33 216+12 18748 5.33 5.292 5.324 5.3%1.6 6.5+2.8
400 4 187+4 19542 192+1 5.332 5.325 5.338 4.0x0.3 4.5+0.4
500 4 181.3 181.8 181.3 5.345 5.342 5.345 4.5+0.1 4.4+0.1
169+5¢ 5.356°
Experiment 187+30° 5.365¢
240+5¢

*Reference 2.
"Reference 12.
‘Reference 6.
dReference 11.
‘Reference 4.
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FIG. 3. Equation of state for CoSi, (E. =500 eV, g =4). No-
tations as in Fig. 1.
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FIG. 4. Equation of state for CoSi, (E,=400 eV, g =4),
without the finite-basis-set correction (a) and with the correc-
tion (b). Notations as in Fig. 1.
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films* cannot be used as the bulk modulus of this com-
pound.

The agreement of the calculated ground-state proper-
ties with the experiment becomes worse if we use the s-
only nonlocal potential for Si. In this case the lattice
constant is overestimated by 2%, and the bulk modulus
of 205 GPa is too high. The band structure is qualitative-
ly similar to that obtained with the pd-potential (see Sec.
V), but the valence s band is shifted down in energy by
0.2-0.5 eV. These results justify our choice of the pd-
nonlocal pseudopotential with the s-local component for
the study of CoSi,.

The importance of the finite-basis-set correction!” is il-
lustrated by Table IV and Figs. 3—6. This correction ac-
counts not just for the low cutoff energy (and number of
plane waves), but more importantly for the finite number
of the k points used. In effect, Table IV demonstrates
convergence of the lattice properties with respect to both
E, and q. The jagged E(V) curves obtained with the low
values of these two parameters are transformed to a sensi-

— jav]
d 3
@ -ZOE
— o
% 3
n g

vV (A)

FIG. 5. Equation of state for CoSi, (E, =400 eV, g =2). The
energy fit in (a) is using quadratic polynomial. Other notations
as in Fig. 4.
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ble form that can be fitted to the Murnaghan EOS with
reasonable accuracy. The uncorrected E(V) curves in
Figs. 4(a) and 5(a) can be fitted only using the simple
quadratic polynomial, while the corrected curves allow
even the accurate determination of the sensitive parame-
ter dB /dP. The consistency between the lattice proper-
ties determined from the E (V) and P(V) curves improves
with the increase of the cutoff energy, and can be used as
a criterion for the convergence of the corrected results.
Analysis of these data shows that the ¢ =2 set of k points
is not sufficient for BZ sampling irrespective of the cutoff
used, while the g =4 set can be used reliably even with a
cutoff energy as low as 400 eV (about 30 Ry).

We also performed the frozen-phonon calculations for
two zone-center vibrational modes. The Raman-active
phonon involves symmetric counterphase motion of the
two Si atoms with the Co atom remaining at rest. The
dependence of the total energy and of the ionic force on
atomic displacement for this phonon is shown in Fig. 7.
The frequency determined from the E(u) and F(u)
curves is 268 and 265 cm !, respectively. The agreement

0.2

0.0

E (V)
(edD) d

02

03

E (eV)
(edD) d

V(A

FIG. 6. Equation of state for CoSi, (E.=300eV, g =4). No-
tations as in Fig. 5.
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u

FIG. 7. The total energy and the force on the Si atom as a
function of the atomic displacement for the Raman-active
zone-center phonon. The energy is shown by circles, force by
squares; lines represent polynomial fit. Displacement is in the
(111) direction, and u is in units of lattice vectors.

between these two values reflects the high level of conver-
gence of the calculation. The Raman spectroscopy shows
a single peak for this mode at 267 cm™1.!° Our data are
in excellent agreement with this result, while the TB cal-
culation slightly overestimates the frequency [285 cm ™!
(Ref. 10)]. The third-order coupling constant defined ac-
cording to Ref. 10 was obtained from Fig. 7 as —13.8 or
—13.2 eV/A} using the E (u) or F(u) curves, respective-
ly. The TB value is —11.15 eV/A3,10 in reasonable
agreement with our ab initio result. Note that the
definition of the third-order coupling constant in Ref. 10
differs from that suggested in Ref. 34 by a factor of 2.
Assuming that the bond deformation is twice as large in
Si compared to the silicide, one expects gs; /g cosi, ~8."

Comparing our results from this section to those from
Sec. III we get the ratio of 7.4, which confirms the inter-
nal consistency of the results.

Another zone-center phonon is IR active and has a
higher frequency. The displacements for this mode are
along the (111) direction, and the Si atoms move in
phase with each other and counterphase with respect to
the Co atom. The relative displacements are determined
from the requirement that the center of mass remains at
rest. Our frozen-phonon calculation gives the frequency
for this mode as 331 cm~!. To the best of our knowledge
there are no experimental data available for this mode.
The TB calculation produces a higher frequency of 371
cm ™ 119 which is consistent with the overestimate of the
Raman-active phonon frequency.

V. ELECTRONIC STRUCTURE OF CoSi,

In this section we present the band structure and the
charge-density distribution for the CoSi, compound.
There have been several previous calculations of the elec-
tronic structure of cobalt disilicide.>”~° The first non-
self-consistent calculation by Gupta and Chatterjee’ used
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FIG. 8. Band structure of CoSi, along high-symmetry direc-
tions (ay=5.344 A).

a composite wave variational version of the APW
(augmented-plane-wave) method, and produced the band
structure that was in complete disagreement with the
later results. The valence-band width of about 21 eV ob-
tained in Ref. 7 was not confirmed by any of the follow-
ing studies. On the other hand, the self-consistent results
of the linear augmented-plane-wave method (LAPW) or
LMTO-ASA (LMTO in the atomic sphere approxima-
tion, Refs. 3 and 8) calculations are in very good agree-
ment with each other. The band structure in the present
study (Fig. 8) is nearly identical to that calculated by
Mattheiss and Hamann using the LAPW method, and it
does not differ by more than 0.2 eV from the LMTO re-
sults.>® The valence-band width is 13 eV, with the nar-
row almost-filled d band cutting through the wide sp
band just below the Fermi level. The conclusion is that
all the self-consistent calculations predict essentially simi-
lar electronic structure, and recent positron-annihilation
experiments® validate the emerging unanimity in the
theoretical description.

This comparison of the band structures calculated us-
ing either pseudopotential or all-electron techniques is
important in assessing the viability of the projector
reduction procedure described in Sec. II. The fact that
the states of all symmetries (s, p, and d) are described
correctly suggests that the elimination of both s and p
nonlocal projectors by the careful selection of
configurations and core radii does not decrease the
overall accuracy.

The valence charge density distribution in the (110)
plane is shown in Fig. 9. The large circles correspond to
Co pseudoatoms, and smaller circles distorted into tri-
angular shapes correspond to Si atoms. The overall
charge distribution is quantitatively similar to the LMTO
results,® with slightly more pronounced covalent bonding
between Co and Si in our calculation. This comparison
justifies the choice of the relatively high core radius for
Co that allows one to obtain a rather soft pseudopoten-
tial, and at the same time this does not distort the bond-
ing picture.
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FIG. 9. Charge-density contours in the (110) plane. Axes are
marked in A.

VI. CONCLUSIONS

The total-energy calculations for cobalt disilicide
confirm the transferability and robustness of the Co pseu-
dopotential. The calculated lattice properties are in ex-
cellent agreement with rather scarce experimental data;
in fact the theoretical values of the bulk modulus and its
pressure derivative seem to be more reliable than the
measured ones. The band structure is in good agreement
with previous all-electron self-consistent calculations in
the literature. The covalent metal-silicon bonds are
found to be slightly more pronounced compared to the
LMTO result. To summarize, we presented the method
of generating soft and transferable pseudopotentials for
the 3d transition element Co. This potential was used to
create a consistent description of the lattice and electron-
ic properties of cobalt disilicide and should be helpful in
future ab initio studies of the silicon-silicide systems.

ACKNOWLEDGMENTS

We are pleased to acknowledge many useful conversa-
tions with M. F. Chisholm, who drew our attention to the
problem of ab initio description of bonding in CoSi,. We
are grateful to K. Kunc, R. J. Needs, O. H. Nielsen, and
R. M. Martin for providing the symmetrization code.
The research of V.M. was sponsored by the Division of
Materials Sciences, U.S. Department of Energy, under
Contract No. DE-AC05-840R21400 with Martin Mariet-
ta Energy Systems, Inc., by an appointment to the Oak
Ridge National Laboratory Postdoctoral Research Pro-
gram administered by the Oak Ridge Institute for Science
and Education.




16 308

IC. Calandra, O. Bisi, and G. Ottaviani, Surf. Sci. Rep. 4, 271
(1984).

2G. Guénin, M. Iguat, and O. Thomas, J. Appl. Phys. 68, 6515
(1990).

3Y. Gareau et al., Phys. Rev. B 43, 14532 (1991).

4G. Bai, M.-A. Nicolet, and T. Wreeland, Jr., J. Appl. Phys. 69,
6451 (1991).

M. F. Chisholm et al., Appl. Phys. Lett. (to be published); and
(unpublished).

L. Weiss, A. Yu. Rumyantsev, and A. S. Ivanov, Phys. Status
Solidi B 128, K111 (1985).

7R. Sen Gupta and S. Chatterjee, J. Phys. F 16, 733 (1986).

5W. L. Lambrecht, N. E. Christensen, and P. Blochl, Phys. Rev.
B 36, 2493 (1987).

9L. F. Mattheiss and D. R. Hamann, Phys. Rev. B 37, 10623
(1988).

10G. Malegori and L. Miglio, Phys. Rev. B 48, 9223 (1993).

1W. B. Pearson, Handbook of Lattice Spacing and Structures of
Metals and Alloys (Pergamon, New York, 1958).

IZR. W. G. Wyckoff, Crystal Structures (Wiley, New York,
1965), Vol. 1.

I3M. C. Payne et al., Rev. Mod. Phys. 64, 1045 (1992).

144 de Vita et al., Phys. Rev. Lett. 68, 3319 (1992).

I5G. P. Francis and M. C. Payne, J. Phys. Condens. Matter 2,
4395 (1990).

16A. M. Rappe, K. M. Rabe, K. Kaxiras, and J. D. Joanno-
poulos, Phys. Rev. B 41, 1227 (1990).

173, S. Lin, A. Qteish, M. C. Payne, and V. Heine, Phys. Rev. B
47,4174 (1993).

18M. H. Lee, J. S. Lin, M. C. Payne, V. Heine, V. Milman, and
S. Crampin (unpublished).

I9N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993 (1991).

20K. Cho and J. D. Joannopoulos, Phys. Rev. Lett. 71, 1387
(1993).

211, Kleinman and D. M. Bylander, Phys. Rev. Lett. 48, 1425

V. MILMAN, M. H. LEE, AND M. C. PAYNE 49

(1982).

22G. P. Kerker, J. Phys. C 13, L189 (1980).

23(a) 1. Stich et al., Phys. Rev. Lett. 68, 1351 (1992); (b) V. Mil-
man et al., ibid. 70, 2928 (1993); (c) A. de Vita et al., ibid. 71,
1276 (1993).

24M. P. Teter, M. C. Payne, and D. C. Allan, Phys. Rev. B 40,
12255 (1989).

23], P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).

26C. L. Fu and K. M. Ho, Phys. Rev. B 28, 5480 (1983).

27R. J. Needs, R. M. Martin, and O. H. Nielsen, Phys. Rev. B
33, 3778 (1986).

28B. Hammer, K. W. Jacobsen, V. Milman, and M. C. Payne, J.
Phys. Condens. Matter 4, 10453 (1992).

29A. de Vita, Ph.D. thesis, University of Keele, Keele, UK,
1993.

30A. P. Seitsonen et al., Phys. Rev. B 48, 1981 (1993).

31H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).

32K. Kunc, R. J. Needs, O. H. Nielsen, and R. M. Martin (un-
published).

3H. J. McSkimm and P. Andreatch, Jr., J. Appl. Phys. 35, 2161
(1964).

34D. Vanderbilt, S. G. Louie, and M. L. Cohen, Phys. Rev. B 33,
8740 (1986).

35D. R. Hamann, Phys. Rev. Lett. 42, 662 (1979).

36C. S. Wang and B. M. Klein, Phys. Rev. B 24, 3393 (1981).

ID. Glotzel, B. Segall, and O. K. Andersen, Solid State Com-
mun. 36, 403 (1980).

3D. A. Papaconstantopoulos, Phys. Rev. B 27, 2569 (1983).

3R. J. Needs (private communication).

403, R. Chelikowsky and M. L. Cohen, Phys. Rev. B 10, 5095
(1974).

4ly. L. Moruzzi, J. F. Janak, and A. R. Williams, Calculated
Electronic Properties of Metals (Pergamon, New York, 1978).

42E. C. Svensson, B. M. Powell, A. D. B. Woods, and W.-D.
Teuchert, Can. J. Phys. 57, 253 (1977).



