ÂùÂIÃä¬ÉȰÝÃD¡G®gÀ»¦Ü¤¤ÂIªk
®gÀ»¦Ü¤¤ÂIªk
¦b¦³¤@¨Ç³õ¦X¡AY¤W¤@ӳ椸¨ººØ±q¤@Ãä®gÀ»¦Ü¥t¤@ªkªº¤èªk¨Ã¤£¬O«Ü¦n¡A¨Ò¦p¡G
(1) ªì©lȫܤ£®e©ö¨ì¹F¥Ø¼ÐÂI¡A¬Æ¦Ü¬Oµo´²©Îµ{¦¡¤¤Â_¡A¿n¤À®Ú¥»°µ¤£§¹¡A¤]´NµL±q¶i¦æ¤U¤@¨B¬O§_©R¤¤ªº§P©w¤F¡C
¥t¥~¦³¤@ºØ¥i¯à¡A¬O¡G
(2) Ãä¬ÉÂI¥»¨¦¹¸û¯S®í¡]¨Ò¦pè¦n¨º¤@ÂI¬O©_²§ÂI¡A¯un´yz´Nn¨Ï¥Îº¥ªñ§Î¦¡ asymptotic form¡^¡A¨D¸Ñªº¨B½Õ³vº¥¦V¥¦¹Gªñ·|²£¥Í°ÝÃD¡F¤Ï¤§¡AY¬O¥Ñ¸ÓÂI¥Xµo¦V¥~©µ¦ù´N¨S¦³³oÓ°ÝÃD¡C
¥H¤W³o¨âÃþ°ÝÃD¡A¤@Ó¬Oµo¥Í¦b¤¤³~¿n¤Àªº³~®|¤W¡]¤Ó»·«hªì©lȤ£¦n¹w´ú¡^¡A¥t¤@Ó¬Oµo¥Í¦b²×ÂI¤W¡]¦æ¬°©_²§¡^¡A§ÚÌ´N¥i¥H¨Ï¥Î®gÀ»¦Ü¤¤ÂI¨Ó§ïµ½¥H¤Wªºª¬ªp¡C
¨ä¹ê¡A®gÀ»¦Ü¤¤ÂIªkªº°ò¥»ºë¯«»P§@ªk¸ò®gÀ»ªk¬O¤@¼Ëªº¡C¥u¤£¹L²{¦b¬O±q¨â°¼®g¦V¤¤¶¡¡A¨â°¼³£n¹ï¤£¨¬ªºªì©l±ø¥ó§@²q´ú¡C¤À§O§¹¦¨¦U¦Ûªº®gÀ»¦Ü¤¤ÂI¡]¤¤¶¡¬Y¤@ÂI¡A¤£¤@©w¥²¶·¬O¥¿¤¤¥¡¡^¡A¦Ü©ó¸ÑÃD¬O§_¹F¦¨ªº§P©w¡A«hµø¨Ó¦V¨â°¼ªº®gÀ»µ¹ªG¨ç¼ÆÈ yi ¬O§_¦b¤¤ÂIÂI¤W¦X¦Ó¬°¤@¡AY©|¥¼¹F¦¨¡A«h¤W¼hªº¥þ°ì¦¬ÀĤû¹yªk·|¸ÕµÛ¥Î§ä®Úªºµ¦²¤¨Ó¹w´ú¤U¤@¨B§ó¦nªº²q´úªì©lÈ¡A¦p¦¹¤ÏÂжi¦æª½¨ì¨D¸Ñ¦¨¥\¬°¤î¡C
°Æµ{¦¡ªº¨Ï¥Î
shootf ¬O¥»¸`ªº¥Dn°Æµ{¦¡¡A¦ýª`·N¥¦¨Ã¤£¬O¥Dµ{¦¡©Ò©I¥sªº²Ä¤@ӰƵ{¦¡¡A³oùتº±¡§Î»P¤W¤@¸`ªº shoot ¤@¼Ë¡A¥Dµ{¦¡¥ý©I¥s newt¡Anewt ¤ºªº funcv ¤~¬O³oùتº shootf¡C¨Ï¥Î°_¨Ó´X¥G¬O©M¤Wӳ椸ªº shoot ¬O¤@¼Ò¤@¼Ëªº¡C
©Ò»Ýªº¥Dµ{¦¡ªº¬[ºc»P¨Ï¥ÎªÌ¥²¶·´£¨Ñªº derivs ¡Bload¡Bscore µ¥¡A¥u¤£¹L load »P score ³£¦U»Ýn¨âÓ¡A¦b³oùبƹê¤W shootf ¦Û¦æ·|§â f1 »P f2 ¬Û´î©w¦¨ f ¨Óµ¹ newt ¨D®Ú¡A¦]¦¹ score1 »P score2 ùرª½¥¿n°µªº¨Æ±¡¤]´N¥u¦³¦U¦Û§â y «ü©wµ¹ f1¤Î f2 ¦Ó¤w¡C
¥Dµ{¦¡»ÝnŪ¤J V1(n2) ¤Î V2(n1) ¨â²Õ¤À§Oµ¹¨âÃä¥Îªºªì©l²q´úÈ¡]¨ä¤¤ n1 + n2 = nvar¡^¡C ³oùئ³¤@Ó·sªº«ü¥On¾Ç¡A´N¬O equivalence¡A¥¦¬On¥Î¦b¥Dµ{¦¡¤¤¡A½Ò¥»°Æµ{¦¡ªº»¡©ú´£¿ô§ÚÌn¼g¦¨
equivalence (v1(1),v(1)) , (v2(1),v(n2+1))
³o¼Ë´N¥i¥H§â v1(n2) »P v2(n1) ¤@°_±Æ¤J v(nvar) °}¦C¤§¤¤¤F¡C
¥t¦³¤@Ó¹ê§@¤WªºÂI»Ýn¦Ò¼{¡A´N¬O¤¤¶¡¶J¦sµ²ªG¦p¦ó¨ú±oªº°ÝÃD¡A¥Ñ©ó odeint ¦b funcv (shootf) ¤¤³sÄò³Q©I¥s¤F¨â¦¸¡A²Ä¤@¦¸ªº¸ê®Æ¬O·|³Q»\±¼ªº¡C¦³¤£¦Pªº¤èªk¥i¥H¸Ñ¨M¦¹¤@°ÝÃD¡A¨ä¤¤¤@ºØ¡A´N¬O¦b¨D¸Ñ§¹¦¨«á§Q¥Î³Ì«áªº v(nvar)¡A§Y v1(n2) »P v2(n1) ¡A¤À¨â¦¸¥h¥h©I¥s odeint¡A¥s§¹¤@¦¸´Nµe¤@²Õ¹Ï¡C ¡]¤j®a¤£n§Ñ°O¡Aodeint ªº x ½d³òºÝÂI x1¡Bx2 ¶¶§Ç¬O¥i¥H¤Ï¹L¨Óªº¡C¡^¬°¤F°µ¨ì³o¤@ÂI¡A§ÚÌ´Nn°Ñ¦Ò odeint ¦b funcv ¤¤³Q¥s¥Îªº¤è¦¡¨Ó¦b¥Dµ{¦¡ªº³Ì«á¦h°õ¦æ odeint ¤@¹M¡A¦p¦¹¨ÓÀò±oø¹Ï©Î¤ÀªRµª®×©Ò»Ýnªº¤¤¶¡µ²ªG¡C