V

 

Pseudopotentials Generated

and

Tested for Collaborations

 

 

 

 

 

 

 

In the course of the research described in Chapter II to IV, over 50 pseudopotentials have been generated for a range of elements in a variety of applications, and the present Chapter reports on this aspect of the work. (The above number excludes of course pseudopotentials that were interim trials in the course of optimisation, or those found unsatisfactory on subsequent testing.)

 

On one hand the practical experience of generating a varity of pseudopotentials stimulated the ideas contained in Chapter II to IV and their gradual refinement. On the other hand there has been no better test of efficiency of these ideas than having them tested through a diversity of practical applications. I was actively involved in a few of these applicationss as a collaborator beyond generating and testing the pseudopotential. The other applications represent projects in the Cambridge resaerch group around Dr. M. C. Payne, and varius collaborations between others and this group.

 

Section V.1 lists various comments and tips relating to generating pseudopotentials, and Section V.2 gives details of the pseudopotentials with some indication of tests and applications which have been undertaken.

 

 

V.1. The Art of Generating Pseudopotentials

 

Although my work has been devolted to removing the "black magic" aspect of generating pseudopotentials, we give here some tips and comments which may be useful to a beginner.

 

On pre-generation research

Before generating a pseudopotential for an element, information on the physical and the chemical properties of the element will be useful. Information such as the ground state configuration of the free atom, the ionic radius and covalent radius of the element in molecules and solids, common compounds of the element (for a solid state test) with their inter-atomic spacings, all help in choosing generating parameters.

 

On choosing rc

Avoid overlapping cores if possible. Usually rc should be chose between the covalent radius and the first (lower) ionic radius of an elements. the rc can be larger if in the application the element is an anion.

 

On choosing Qc

Use the Qc which give best agreement on the logarithmic derivative. When the same agreement is produced in a range of Qc, the smallest should be used unless one is aiming for some special shape of the pseudopotential.

 

On choosing the local components of the pseudopotential

For 2p elements such as O, choosing minimum non-crossing local (i.e. making V L(r) attractive among Vl so that dVl(r) is alway positive) helps to improve the logarithmic derivative of all angular channels. But this only works for those elements. For d-valence elements, i.e transition metals, choosing Vl=0 as the local pseudopotentia is necessary for the Kleinman-Bylander construction. Choosing s local usually works for most cases, if there is no preference on which channel is to be taken as the local potential. A local potential which is a weighted mix from different components (usually two) is necessary for the Projector Reduction technique, a good mix producing a well balanced scattering property in all (both) channels.

 

On choosing the atomic electronic configurations

In most cases the atomic ground state works very well for using the occupied atomic orbitals. A special prescription to the configuration in the mimic solid state can be used but it may not change the result much. For example one might use the configuration 1s2 2s2 2p3 or 1s2 2s1.5 2p2.5 for carbon in diamond. (See also Cd000 and Cd001 in Section VI.2.) Configurations for excited states in the table published in BHS paper are good ones to start with. Avoid choosing extremely small occupation number of states, especially those states occupied in a neutral atomic configuration. The exchange-correlation interaction of core and valence electrons sampled by such a low density valence state is not correct and  may cause problem. For a very large core radius rc, a slightly ionised configuration can be used, but this is dangerous and the scattering tests on a neutral configuration must be performed to ensure that the potential is free from ghost states.

 

On relativistic calculations

The so-called "Scalar relativistic" wave equation is recommended for elements heavier than Xe. It usually lowers the potentials, i.e. makes them more attractive. The largest change appears on the s potential which is not surprising because the s electron penetrates most into the strong potential near the nucleus.

 

On interpreting logarithmic derivatives

Deviation of the logarithmic derivative in the higher energy range is less important. This is  because at higher kinetic energy the scattering waves are more oscillatory, giving a larger variation of logarithmic derivative F'/F (i.e. [lnF]' ) with respect to energy but without changing the charge density (norm) doesn't change. Agreement near the atomic eigen level is important. An extra peak of logarithmic derivative (compared with an all-electron full potential calculation) near the atomic eigenvalue within the range of a typical band width is an indication of a ghost state, as there is one more node in the wave function that has been counted during the test when the energy scans across the range of solid state interest.

 

On the criterion for a error tolerable error in solid state tests

Compared to experimental results, an error in the lattice parameter within 2% for an insulator, 3% for a metal should be expected, while 15% error of the bulk modurus is acceptable. Be careful that some bulk moduli were measured at room temperature, and extrapolataion to 0oK should be used.

 

On transferability

A pseudopotential should be designed to be transferable within one application, but not necessarily so between very different applications.

 

On making judgements

Always think of a physical interpretation, no matter whether it is elegant or speculative. Don't taketoo seriously that there is some Black Magic : but believe in trial and error.

 

 

 

 

 

V.2. A List of Working Pseudopotential

 

The following is a compilation of 40 to 50 reasonable pseudopotentials that have been generated by me using the methods described in Chapter II, III and IV. Generating parameters, figures for Vl(r) and logarithmic derivatives are presented for each pseudopotential.

 

Most of the pseudopotentials have been generated with suitability for general purpose use in mind. However some have been generated for specific purposes requireing special values of the parameters, e.g. an especially soft pseudopotental for a calculation with a very large basis set, a particular rc in a material with unusually small interatomic spacing.

 

All the pseudopotentials have of course been tested as regards comparing their logarithmic derivatives against the all-electron calculations. (For those relativitstic ones we compare the logarithmic derivatives of KB and non-KB pseudopotentials). Most have also been tested by calculations on a simple solid or molecules, including always the lattice constant and sometimes bulk modulus, as indicated briefly below. The solid state test has been carried out either by myself, or otherwise by the named collaborator. Theough out this chapter, atomic unit (a.u.), i.e. Bohr radius, has been used as the unit for rc. Lattice parameters are in Angstron in all tests.

 

 

 

 

 

Ag005

 

Electronic configuration: for all s, p, d : 4d 9.00 5s 0.75 5p 0.25

rc(s) = rc(p) = 2.5 a.u. (Bohr radius), rc(d) = 2.7 a.u.

The s pseudowavefunction use only two sphereical Bessel functions to expand, the third term was set identical to the second one.

Qc(s) = 1.00 *q2(s), Qc(p) = 1.016*q3(p), Qc(d) = 1.17*q3(d)

Local potential: s

 

Tests :

 

Ag005 (smearing 1eV) (start from 4eV smearing)

 

Grid 18x18x18

 

E_cut = 495 eV (450 plane waves)

  

======================================================

 Da/a0       E_tot           stress_xx  stress_yy  stress_zz

------------------------------------------------------------

 -2%      -930.4014202      -0.013532  -0.017884  -0.015376

 -1%      -930.4102006       0.008468   0.009065   0.009078

  0%      -930.3805164       0.034386   0.029028   0.029774

  1%      -930.3781922       0.046174   0.046512   0.047885

  2%      -930.3513368       0.061996   0.061053   0.063311

======================================================

 

 

 

Al013

 

Electronic configuration for s and p potential : 3s2.00 3p1.00 . (No d potential)

rc(s) = rc(p) = 2.4 a.u., Qc/q3(s)=1.10, Qc/q3(p)=1.00 , Local potential is p.

 

Tests : See Chapter IV.

 

 

 

Al013a

 

A kinetic energy optimized Qc-tuned Aluminum pseudopotential: Al013a

Gnerated with effect of using p-potential to immitate d-potential.

(i.e. the idea of Projector Reduction technique)

Configuration for s and p potential : 3s2.00  3p1.00   (No d potential)

rc(s) = rc(p) = 2.4 a.u. ,  Qc/q3(s) = 1.10, Qc/q3(p) = 1.10 , Local potential is p.

 

Tests : See Section IV.3 of Chapter IV

 

 

 

As000

 

Electronic configurations : for s and p : 4s 2.00 4p 3.00 : for d : 4s 1.00 4p 1.75 4d 0.25

rc(s, p, d) = 2.0 a.u., Qc/q3(s, p, d) = (0.70, 0.90, 0.95)

Local : p

 

 

 

Au001

 

Atomic electronic configuration : [core = Xe + 4f 14] 5d9.00  6s0.75  6p0.25  for all s, p and d components (note that f electrons are frozen into the pseudo-core)

rc(s, p, d) = (2.5, 2.5, 2.8) a.u.,

The s and p waves only use two Sphereical Bessel function terms, d uses three.

Qc/q2(s) = 1.00, Qc/q2(p) = 1.00, Qc/q3(d) = 1.16

 

Local potential is s

 

 

 

B001

 

Electronic configurations : For s and p : 2s 2.00 2p 1.00  : For d : 2s 1.00 3d 0.20

rc(s, p, d) = 1.4 a.u. , Qc/q3(s, p, d) = (0.80, 0.80, 1.00) , Local potential : p.

 

Tests :

 

BCl3 molecule in a 10 Angs cubic box : (use B001 with Cl000)

 

Grids : 64x64x64

 

E_cut = 300 eV

 

 TOTAL ENERGY IS               -1309.4623151

 -------------------------------------------------------------------------

 NSP ATOM     a1         a2         a3         Fx         Fy         Fz

 -------------------------------------------------------------------------

  1   1    0.000000   0.000000   0.000000  -0.002578   0.000980  -0.001276

  2   1    0.173099   1.000000   0.999987  -0.061288   0.000340  -0.000196

  2   2    0.913453   0.149946   0.999984   0.033098  -0.055030  -0.000405

  2   3    0.913472   0.850050   0.999992   0.032416   0.053032   0.000007

 -------------------------------------------------------------------------

 

=> B-Cl bond length 1.09% smaller than expt. value (1.75 Angs)

 

 

E_cut = 350 eV

 

 TOTAL ENERGY IS               -1309.6483414

 -------------------------------------------------------------------------

 NSP ATOM     a1         a2         a3         Fx         Fy         Fz

 -------------------------------------------------------------------------

  1   1    0.000000   0.000000   0.000000   0.002381   0.000014  -0.000915

  2   1    0.172792   0.000002   0.999988  -0.010656   0.000304   0.000275

  2   2    0.913596   0.149672   0.999984   0.003976  -0.010556   0.000255

  2   3    0.913614   0.850319   0.999992   0.003575   0.010135   0.000290

 -------------------------------------------------------------------------

 

=> B-Cl bond length about 1.26% smaller than expt. value

 

 

 

Tests (2) : (By Dr. M. Fearm at Material Modeling Lab, Oxford)

 

The E-V calculations for BP using B001 and the P001.

Converged at E_cut above 300-400 eV. The lattice constant

comes out around 1% too small, which is quite good.

 

 32 k-pt calculations. q=4 from Monk-Pack scheme.

 

 a(expt) = 4.538A

 

===================================================

  a     E_cut (300eV)  E_cut (400eV)  E_cut (600eV)

---------------------------------------------------

4.44    -258.91100      -259.15662     -259.19222

4.46    -258.92121      -259.16461     -259.19998

4.48    -258.92262      -259.16841 *   -259.20304 *

4.50    -258.92658 *    -259.16813     -259.20137

4.52    -258.92260      -259.16340     -259.19592

4.538   -258.91788      -259.15530     -259.18748

4.56    -258.90613      -259.14137     -259.17272

===========================================

* indicates energy minimum

 

 

 

B001a

Same as B001, but with d projector reduced.

 

 

 

B002

 

A Boron pseudopotential with a smaller rc for checking the B in bulk Si system.

Electronic configurations : for s and p : 2s 2.00 2p 1.00 : for d : 2s 1.00 3d 0.20 (from BHS)

rc(s, p, d) = 1.25 a.u. , Qc/q3(s, p, d) = (0.80, 0.80, 1.00) , Local potential : p

 

Tests : Tested by Dr. M. Fearn whcih give similar results as in the case when B001 is used.

 

 

 

Ba015Rg

 

Qc-tuned Optimised Ba Psuedopotential Ba015Rg (relativistic calculation)

The n = 5 core shell has been treated as valence.

 

Eletronic configuration : (Reletivistic) for all s, p, d : 5s 2.00 5p 5.75 5d 0.25

rc(s, p, d) = 2.7 a.u. , Qc/q3(s, p, d) = (0.40, 0.80, 0.50) , Local : p.

 

Tests :

 

Test (1)

A quick BaO crystal test at Ecut = 500eV (2 k-points)

=======================================================

 Da/a0       E_tot        stress_xx  stress_yy  stress_zz

--------------------------------------------------------------

   0%        -4535.5149685           0.030057       0.030044       0.030058

=======================================================

 

Test (2)

Ba015Rg has been used in the calculation of  small molecule halides MX2 [Ref.M.1]

 

 

 

Be000

 

Electronic configurations : for s : 2s 2.00 : for p and d : 2s 0.00 2p 0.25 3d 0.25

rc(s, p, d) = 1.4 a.u. , Qc/q3(s, p, d) = (1.00, 1.00, 1.00) , Local : s.

 

Note:

Be000 might work just with s-potential, so in this Be000 the s-potential has been chosen as local. If p and d parts are not needed it can be swiched off.

 

 

 

Br000

 

Electronic configuration: for s and p : 4s 2.00  4p 5.00 : for d : 4s 1.00  4p 3.75  4d 0.25

rc(s, p, d) = 1.4 a.u. ,Qc/q3(s, p, d) = (1.00, 1.00, 0.90), Local : Mixed (s, p, d) = (0.0, 0.7, 0.3)

 

Projector Reduced for both p and d non-local parts. (Which means, s is the only non-local part, the local potential takes care of both p and d.)

 

 

 

C009

 

Electronic configuration: s and p components: 2s 2.0 2p 2.0 : for d : 2s 0.75 2p 1.00 3d 0.25

 

rc(s, p, d) = (1.0, 1.4, 1.4) a.u. , Qc(s,p,d) = q3(s,p,d) + (1/8)*q1(s,p,d).

Choice of local component : Minimum and no-crossing

 

 

Some informations on C009 (from the old info file of CASTEP data directory):

 

  Purpose:

This Carbon potential was generated to describe organic molecules interact with surface, in which the C-C single, double and triple bonds of the molecules should be reasonably described without pre-asummption of the direction of charge transfer between molecules and surface. A highly transferable potential is required, so this is a tough test for any optimised potential.

 

  Method:

We tackle this problem by using a rc slightly smaller than the covalent radius of Carbon found from periodic table. 3-term scheme is used to make it as soft as possible. At rc = 1.4 a.u., the kinetic energy filter Qc is chosen to be q3+(0.125)*q1 to allow enough high wave-number components of pseudo wave function to be inside the region of rc. By doing this we managed to remove the potential energy barrier at rc which was the result of the optimization under norm-conservation but without the constraint of the wave function second derivative continuation.

 

  d-component:

At the time C009 was generated we did not have any better method to decide whether to use d-component and how it should be generated, therefore we follow many people using the excitation configuration suggested in BHS paper.

 

  The rc of s-component:

The reason we use rc(s) = 1.0 a.u. instead of 1.4 is that the scattering property (logarithmic derivative plot) of s potential looks not as good as those of the p and d potentials. However, we have not tested the rc(s) = 1.4 a.u. case, maybe that rc is already sufficient for most applications. (In many cases, it is more difficult for s potential than for p or d to reach the same degree of agreement to the all-electron logarithmic derivatives.)

 

  Transferability:

An interesting feature worth mentioning for this C009 is that we did generate a similar one with 2s 2.0 2p 1.0 (ie, C+) configuration. We found that such C+ potential is almost identical (indistiguishable from graphics output) to C009, which give us some confidence on this C009 in ionized environment.

 

  Some tests:

 

    test 1:

 

Convergence test of C009:  (diamond structure 2 atom unit cell)

 

With Grid 36x36x36 and 1 k-point (gamma point) (unit:eV)

=====================================================================

Ecut            Etot (C009)            Etot (C011)            Etot (c501)

---------------------------------------------------------------------

200          -259.4946695          -262.7598104          -259.4937132

300          -275.0913281          -277.7028793          -274.0124997

400          -277.9823971          -280.3250624          -276.8749429

500          -280.7073211          -282.8892206          -280.3055508

600          -281.3373075          -283.4969745          -281.2953102

700          -281.5868402          -283.7268133          -281.8431799

800          -281.5874702          -283.7287377          -281.8508776

900          -281.5913412          -283.7364188          -281.8767534

=====================================================================

 

( C011 is the same as C009 except rc(s) = 1.5 a.u. )

( c501 is a Troulier & Martins potential generated by Dr Lin, with

 reference configuration 2s 2.0 2p 2.0 3d 0.0, rc(s,p,d) = 1.45,

 and d component is chosen as local.)

 

(unit:eV)

with Grid 20x20x20 and 4 k-points (gamma point of 8 atom cell)

=================================================

Ecut            Etot (C009)            Etot (C011)

-------------------------------------------------

200          -289.6219489          -293.8776430

300          -301.4012288          -303.8535788

400          -304.7355822          -306.4620305

500          -306.5260928          -307.8590246

600          -306.9122977          -308.4647471

700          -307.0267655          -308.5219363

800          -307.0331341          -308.5328968

900          -307.0346273          -308.5335537

=================================================

[ Note : The strange 800 eV to 900 eV jump in 1 k-point tests disappear

  when one use 4 k-points. ]

 

 

   Test 2:

 

700 eV,  one k point (gamma point) relaxed C2 dimer in a 7 Ang cubic box

 

 TOTAL ENERGY IS                -300.3882883

 -------------------------------------------------------------------------

 NSP ATOM     a1         a2         a3         Fx         Fy         Fz

 -------------------------------------------------------------------------

  1   1     .500000    .500000    .500000   -.005722   -.005608   -.005761

  1   2     .602579    .602531    .602559    .005989    .005785    .005418

 -------------------------------------------------------------------------

 

=> C-C distance = 1.243429482708 Angstrong

 

 

 

 

700 eV,  4 k points ( k=0.25 ) relaxed C2 dimer in a 7 Ang cubic box

 

 TOTAL ENERGY IS                -300.4095048

 -------------------------------------------------------------------------

 NSP ATOM     a1         a2         a3         Fx         Fy         Fz

 -------------------------------------------------------------------------

  1   1     .500000    .500000    .500000    .015179    .019426    .015562

  1   2     .602687    .602827    .602625   -.022316   -.028882   -.011843

 -------------------------------------------------------------------------

 

=> C-C distance = 1.245329363513 Angstrong

 

 

 

 

   Test 3:

 

Diamond structure, 2 atom primitive unit cell.

Use 4 k-points which are equivalent to the gamma point of cubic 8 atom cell.

Plane wave cutoff energy is 700 eV.

 

1.   Ideal Structure (lattice parameter 3.57 Angs)

 

 TOTAL ENERGY IS                -308.5224139

 -------------------------------------------------------------------------

 -------------------------------------------------------------------------

  SIGTO     .010419    .010450    .010905   -.000067   -.000062    .000044

 -------------------------------------------------------------------------

 -------------------------------------------------------------------------

 NSP ATOM     a1         a2         a3         Fx         Fy         Fz

 -------------------------------------------------------------------------

  1   1     .000000    .000000    .000000    .004692   -.004394   -.001716

  1   2     .250000    .250000    .250000    .003574   -.004598   -.002641

 -------------------------------------------------------------------------

 

 

 

2.   Unit cell 0.3% smaller (lattice parameter 3.56 Angs)

 

 TOTAL ENERGY IS                -308.5221886

 -------------------------------------------------------------------------

 -------------------------------------------------------------------------

  SIGTO    -.014528   -.014734   -.014195   -.000099   -.000014    .000072

 -------------------------------------------------------------------------

 -------------------------------------------------------------------------

 NSP ATOM     a1         a2         a3         Fx         Fy         Fz

 -------------------------------------------------------------------------

  1   1     .000000    .000000    .000000    .001175   -.005514    .001180

  1   2     .250000    .250000    .250000    .000398   -.004682   -.000157

 -------------------------------------------------------------------------

 

 

 

3.   Unit cell 0.3% larger (lattice parameter 3.58 Angs)

 

 TOTAL ENERGY IS                -308.5202617

 -------------------------------------------------------------------------

 -------------------------------------------------------------------------

  SIGTO     .034883    .034657    .035238   -.000097   -.000016    .000073

 -------------------------------------------------------------------------

 -------------------------------------------------------------------------

 NSP ATOM     a1         a2         a3         Fx         Fy         Fz

 -------------------------------------------------------------------------

  1   1     .000000    .000000    .000000    .001140   -.005841    .001095

  1   2     .250000    .250000    .250000    .000045   -.004850   -.000267

 -------------------------------------------------------------------------

 

[ Note : The stress changed its sign when lattice parameter went from +0.3%

  to -0.3% ]

 

 

 

  Interpretation of the results of tests:

1. Converge within 1 milli-Ryd (0.01 eV) at 700 eV, and 0.1 eV convergence at 600 eV.

2. The calculated C2 dimer bond length is 1.243 or 1.245 depends on the k-points chosen.

    We have found that there are two experimntal values for the interatomic distance of C2 dimer,

    one is 1.312 Angs. from [Ref.H.1], and the other being 1.243 from A. D. Becke,

    Phys. Rev. A 33, 2786 (1986) also sited in p.179, Table 8.2 of [Ref.G.1]. If the later quote

    is more reliable, then the calculated bond length is very good.

3. Lattice parameter at 700 eV, agree with experiment within 0.6% (Expt    3.57 Å).

 

  Other sources of test :

Chirs Goringe and Dr. Adrian Sutton in Oxford have done extensive tests on C009 for C2H2, C2H4 and C2H6.

 

See also the CH3OH molecule tests listed in C021.

 

 

 

C021

 

Electronic configuration : for s and p : 2s 2.00 2p 2.00  ; for d : 2s 0.75 2p 1.00 3d 0.25

rc(s, p, d) = 1.4 (a.u.), Qc/q3(s, p, d) = (0.80, 1.05, 1.0325)

Local mixing ratio (s, p, d) = (0.0, 1.0, 0.0)

(i,e. Vp(r) is actually local but Vd(r) is so similar to Vp(r) such that this really doesn't matter !)

 

Application:

For organic molecule, ploymer, etc. Need 600 or 650 eV to converge the structure. For large systems.

 

Comments:

This C021 pseudopotential has the local part of potential reproduces almost exactly both p and d scattering of those from a full projector one. This technique avoids the uncertainty of whether one should use d-potential for Carbon and also redcuce the ambiguity of choosing the d-potential. There is only one non-local projector in this Vps, which is s-potential. The advantage of using C021 for a  better computing efficiency is expected.

 

Tests:

 

Test I (by Rajiv Shah)

 

Equilibrium bond lengths, in Å, for different

pseudopotentials. 550eV cutoff.

 

=============================================================

        Full                                     Redu

        proj          Reduced projector          proj   Expt.

=============================================================

        C009    ------------C021-------------    C022

        O027     O046    O049    O050    O051    O051   Expt.

=============================================================

C---H   1.097   1.095   1.095   1.094   1.096   1.097   1.094

C---O   1.423   1.453   1.460   1.455   1.460   1.457   1.437

O---H   0.972   0.979   0.980   0.978   0.979   0.978   0.978

=============================================================

 

 

 

 

Test II (by Matthew D. Segall)

 

All simulations were run with a cut-off energy of 600ev, using GGAs

for 10 iterations without relaxation followed by 20 iterations with

relaxation. The h2001, C021 and n2001N1 pseaudopotentials were used.

Cubic supercells were used and the side length was increased until

the bond length of interest had converged.

 

The results are as follows:

 

Methylamine

~~~~~~~~~~

          H    H

          |   /

        H-C--N

          |   \

          H    H

 

Source  C--N bond length

Expt.   1.483

6A side 1.463

7A side 1.460

8A side 1.460

 

The calculated bond length was 1.55% too short.

 

Ethane

~~~~~

          H  H

          |  |

        H-C--C-H

          |  |

          H  H

 

Source  C--C bond length

Expt.   1.532

6A side 1.509

7A side 1.516

8A side 1.516

 

The calculated bond length was 1.04% too short.

 

 

 

 

Test III

 

7 Angs. box, 1 k-point. 600 eV, 54x54x54 FFT grid

 

 

(Using pseudopotentials C021, N010, h2001) LDA k-space

 

 TOTAL KINETIC ENERGY            377.0564616

 LOCAL POTENTIAL ENERGY         -590.1426327

 NONLOCAL POTENTIAL  ENERGY       55.7420618

 HARTREE ENERGY CORRECTION      -561.4103683

 EX-CORR ENERGY CORRECTION        49.6492433

 EWALD ENERGY                    164.2169554

 TOTAL ENERGY IS                -504.6039709

 -------------------------------------------------------------------------

 NSP ATOM     a1         a2         a3         Fx         Fy         Fz

 -------------------------------------------------------------------------

  1   1    0.989533   0.985081   0.924390  -0.015919  -0.010734   0.006742

  2   1    0.020078   0.032737   0.125474   0.015158   0.017455  -0.004553

  3   1    0.011097   0.177348   0.148314   0.019823   0.007451  -0.028711

  3   2    0.153005   0.989888   0.170329   0.006489   0.001885   0.005931

  3   3    0.100238   0.039158   0.823880  -0.010656   0.005027  -0.003085

  3   4    0.982468   0.828355   0.908003   0.002626  -0.002726   0.000070

  3   5    0.850438   0.042015   0.877170  -0.004533  -0.010354   0.021526

 -------------------------------------------------------------------------

-> 1.4595 Ang (-1.5%)

 

 

 

(Using pseudopotentials C021, N010, h2001) GGA k-space

 

 TOTAL KINETIC ENERGY            383.5600152

 LOCAL POTENTIAL ENERGY         -596.8865826

 NONLOCAL POTENTIAL  ENERGY       55.5306252

 HARTREE ENERGY CORRECTION      -567.3534514

 EX-CORR ENERGY CORRECTION        49.3671008

 EWALD ENERGY                    166.8291592

 TOTAL ENERGY IS                -508.6688256

 -------------------------------------------------------------------------

 NSP ATOM     a1         a2         a3         Fx         Fy         Fz

 -------------------------------------------------------------------------

  1   1    0.989613   0.985125   0.923399  -0.019320  -0.018566   0.001300

  2   1    0.020626   0.032923   0.125226   0.018893  -0.002341   0.002824

  3   1    0.011006   0.176120   0.148505   0.018646   0.004903  -0.032083

  3   2    0.152230   0.990158   0.169784   0.004881   0.001932   0.007333

  3   3    0.099749   0.038900   0.824586  -0.007569   0.007232  -0.006358

  3   4    0.982791   0.829904   0.907572   0.002578   0.000627  -0.006353

  3   5    0.851994   0.042023   0.876893  -0.001223  -0.008178   0.023481

 -------------------------------------------------------------------------

-> C-N distance : 1.468 Angs (-0.9%)

 

 

 

(Using pseudopotentials C021, N010, h2001) GGA r-space

 

 TOTAL KINETIC ENERGY            383.5608976

 LOCAL POTENTIAL ENERGY         -596.8881185

 NONLOCAL POTENTIAL  ENERGY       55.5304068

 HARTREE ENERGY CORRECTION      -567.3564348

 EX-CORR ENERGY CORRECTION        49.3671624

 EWALD ENERGY                    166.8329500

 TOTAL ENERGY IS                -508.6688284

 -------------------------------------------------------------------------

 NSP ATOM     a1         a2         a3         Fx         Fy         Fz

 -------------------------------------------------------------------------

  1   1    0.989614   0.985127   0.923403  -0.018928  -0.018398   0.001347

  2   1    0.020629   0.032924   0.125226   0.019222  -0.002243   0.002764

  3   1    0.011011   0.176123   0.148500   0.018666   0.004936  -0.031998

  3   2    0.152232   0.990160   0.169786   0.004700   0.001969   0.007202

  3   3    0.099747   0.038903   0.824587  -0.007697   0.007167  -0.006294

  3   4    0.982792   0.829905   0.907572   0.002562   0.000507  -0.006309

  3   5    0.851993   0.042024   0.876900  -0.001423  -0.008138   0.023363

 -------------------------------------------------------------------------

-> C-N distance : 1.468 Angs (-0.9%)

 

 

 

 

Ca005

 

Electronic configuration: for s and p : 3s 2.00 3p 6.00 (This adds up to Ca2+.)

rc(s, p) = 2.0 a.u. ; Qc/q3(s, p) = (0.90, 1.06), Local : p.

 

Comments :

We expect that using this Ca005 will help to reduce most problems related to core correction and

core polarization because the core is unfreezed to one shell below valence shell. (However, depends on systems, there might be no problem at all.) Having in mind that this Ca will be used in a ionic (i.e. Ca2+) system, we prefere Ca2+ [core] 3s 2 3p 6 instead of Ca[neutal] [core] 3p 6 4s 2. We believe optimisation is essential for such kind of stratage, because the highly ionised pseudopotential is extreme hard.

 

Tests :

A lot of tests has been done by Dr. K. Refson (Earth Sciences, Oxford).

 

 

 

Cd000

 

Electrinc configuration : for s, p and d : 4d 10.00 5s 0.75 5p 0.25

rc(s, p, d) = 2.5 a.u. , Qc/q3(s, p, d) = (1.00,1.00,1.18) , Local potential : s.

 

 

 

Cd001

 

Same as Cd000 expect for the electronic configuration : for s, p and d : 4d 10.00 5s 1.27 5p 0.37

 

 

 

Cl000

 

Electronic configurations : for s and p : 3s 2.00 3p 5.00 ; for d : 3s 1.00 3p 3.75 3d 0.25

rc(s, p, d) = 1.7 a.u., Qc/q3(s, p, d) = 1.00 ; Local potential : p.

 

Tests:

 

Cl2 molecule in a 10 Å cubic box :

 

E_cut : 300 eV

Grids : 64x64x64 (60x60x60 is sufficient)

 

 

 TOTAL ENERGY IS                -818.6694545

 -------------------------------------------------------------------------

 NSP ATOM     a1         a2         a3         Fx         Fy         Fz

 -------------------------------------------------------------------------

  1   1    0.000000   0.000000   0.000000   0.038538   0.003198  -0.002190

  1   2    0.197806   0.999982   0.999959  -0.083952   0.003397   0.002644

 -------------------------------------------------------------------------

 

 

 TOTAL ENERGY IS                -818.6694939

 -------------------------------------------------------------------------

 NSP ATOM     a1         a2         a3         Fx         Fy         Fz

 -------------------------------------------------------------------------

  1   1    0.000000   0.000000   0.000000   0.028101   0.000897  -0.000453

  1   2    0.197739   0.999983   0.999960  -0.041045   0.000211   0.000553

 -------------------------------------------------------------------------

 

The bond length is about 0.65% smaller than experiment (1.99 Å)

 

 

 

Co013_v2

 

Configuration: for all s p d :  3d 7.00  4s 1.00  4p 0.25

rc(s, p, d) = (2.0, 2.0, 2.4) a.u. , Qc/q3(s, p, d) = (0.70, 0.965, 1.18), Local (mixed) 0.2 0.8 0.0

Projector reduced for s and p projector.

 

Tests : (By Dr. V. Milman)

 

First - CoSi2. It has fluorite structure, primitive unit cell has an fcc basis vectors and atoms are at Co(000), Si (1/4,1/4,1/4) and (3/4,3/4,3/4). Tests were done for this primitive cell with symmetrisation and they are pretty well converged with respect to sampling.

 

Convergence test.

 

Co013_v2 and Si801s_only, a0 = 5.4 (Angs)Å.

==================================

 500 eV  Etot= -884.4999  SIGT=-0.0413

 700           -884.5590       -0.0407

==================================

Bands are the same within 0.001 eV or better for these two cutoffs.

Bands differ by 0.1 eV between Co006 and Co013_v2 potentials.

--------------------------------------------------------------------

 

Equilibrium a0 with Co013_v2 potential, 500 eV, q = 4 set (10 points with

symmetry). DEL from 4.0 to 0.05 eV with NDEL = 4. Si is s-only.

========================================

 a0         E           SIGT          EFERMI

----------------------------------------------

 5.3      -884.3316    -0.1179        1.644

 5.4      -884.4999    -0.0413        1.355

 5.45     -884.5281    -0.0097        1.216

 5.45*    -884.5278    -0.0079        1.325

 5.5      -884.5236     0.0306        1.080

 5.6      -884.3828     0.0913        0.790

========================================

* - q=8 set, 60 k-points, corresponds to 512 points in full BZ

    converged within 3e-4 eV for Etot and 2e-3 for SIGT

 

 

Results:

===========================================

         from P(V)        from E(V)   exp

-------------------------------------------

a0        5.465             5.465     5.36

B         205               203       169

===========================================

 

 

The same Co013_v2 potential with the Si012 (i.e. si501).

 

Assume convergence is the same (same Co, after all).

 

Lattice constant. Ecut=500 eV, q=4.

=============================================

 a0         E_tot       SIGT          EFERMI

---------------------------------------------

5.26     -885.68090   -0.05867        -0.209

5.28     -885.70311   -0.04321        -0.244

5.30     -885.71892   -0.02859        -0.278

5.32     -885.72896   -0.01455        -0.313

5.34     -885.73307   -0.00140        -0.347

5.35     -885.73322    0.00504        -0.364

5.36     -885.73186    0.01117        -0.380

5.38     -885.72526    0.02314        -0.414

5.42     -885.69907    0.04422        -0.466

5.45     -885.66314    0.05979        -0.530

=============================================

 

Results (Murnaghan EOS):

 

================================================

         from P(V)        from E(V)   exp (300K)

------------------------------------------------

a0        5.342             5.345     5.36

B         181.8             181.3     169

dB/dP     4.5               4.4

==========================================

 

The CoSi2 work has been published in [Ref.M.1]

 

 

 

Cs006b

 

(Relativistic atomic calculation) Electronic configuration : for all s, p, d : 5s 2.00 5p 6.00 5d 0.25

rc(s, p, d) = (2.0, 1.7, 2.0) a.u. , Qc/q3(s, p, d) = (0.80, 0.80, 1.00) , Local : p

 

 

Cu006a

 

Electronic configuration : for all s, p, d : 3d 9.00 4s 0.75 4p 0.25

rc(s, p, d) = (2.0, 2.0, 2.5) a.u. , Qc/q3(s, p, d) = (1.15, 1.00, 1.20) , Local : s.

 

Test : See Cu006g

 

 

 

Cu006g

 

Electronic configuration : for all s, p, d : 3d 9.00 4s 0.75 4p 0.25

rc(s, p, d) = (2.0, 2.0, 2.5) a.u. , Qc/q3(s, p, d) = (0.80, 0.95, 1.20) , Local : mixed (0.5, 0.5, 0.0)

Both s and p projectors reduced.

 

Tests :

 

Converged at 600 eV - q = 12 (MP points in the primitive cell).

Can be used safely at 500eV and q = 8, perhaps even below that.

 

Lattice parameters and bulk modulii

====================================

               a0       B        dB/dP

-----------------------------------------

Cu006a       3.650     153      4.8+-0.5

Cu006g       3.647     150      5.1+-0.4

Cu006i       3.658     145      4.8+-0.2

exp.         3.61      142       5.59

====================================

 +1-1.5% in a0, +6% in B - pretty good.

 

 

 

Cu006i

 

Configuration : 3d 9.00 4s 0.75 5p 0.25

rc(s, p, d) = (2.0, 2.0, 2.5) a.u. , Qc/q3(s, p, d) = (1.00, 1.20, 1.20) , Local : s

 

Comments :

This potential is used to demostrate the relexibility of choosing the rc for a optimized Qc-tuned pseudototential. For a given rc, Qc can be tuned in the way to allow the potential to deliver the best scatering under that rc. This Cu006i is serve as a typical example of optimised Qc-tuned potential with "standard" Kleiman-Bylander projectors construction.

 

Tests :

See Cu006g

 

 

 

Cu027a

 

Electronic configuration : 3d 9.00 4s 0.75 5p 0.25  (for all s, p, d potentials)

rc(s, p, d) = 2.0 a.u. , Qc/q3(s, p, d) = (0.80, 1.00, 1.175) , Local : s

 

 

Tests : (Done by Dr S. Crampin.)

 

An 8x8x8 k point grid was used, with a simple-cubic

4 atoms unit cell, and a smearing of 1eV.

============================================

 Ecut-off     a(Angst)     B(GPa)       B'

--------------------------------------------

  1000         3.60         166        5.0

   650         3.59         163        5.4

  LAPW         3.61         162

  TM           3.60         160        5.1

  expt.        3.61         142        5.28

============================================

 The LAPW (all electron calc.), TM (Trouiller and Martin) and experimental

 data are from the Trouiller Martin paper PRB43 1993 (1991).

 

There is little error introduced when one reduces the cut-off  from 1000eV, when the absolute energy is converged to about 0.01eV, down to  650eV, when the absolute error is about 0.1eV.

 

 

 

F000

 

Electronic configurations : for s and p : 2s 2.00 2p 5.00  ; for d : 2s 1.25 2p 2.50 3d 0.25

rc(s, p, d) = 1.8 a.u. , Qc/q3(s, p, d) = (0.95, 1.15, 1.00) , Local : d.

 

 

 

Fe002

 

Electronic configuration : for s, p and d :  3d  6.00 5s 1.00 5p 0.25

rc(s, p, d) = 2.4 a.u. , Qc/q3(s, p, d) = (0.48, 0.87, 1.18), Local : mixed, with coefficients (0.3, 0.7, 0.0), sp projectors reducced

 

 

 

Hg000R

 

(Relativistic atomic calculation) Electronic configuration : for all s, p, d : 5d 9.00 6s 2.00 6p 0.25

rc(s, p, d) = 2.4 a.u. , Qc/q3(s, p, d) = (0.40, 1.10, 1.14) , Local : s.

 

 

 

I000

 

Electronic configurations: for s and p : 5s 2.00 5p 5.00 ; for d : 5s 1.00 5p 3.75 5d 0.25

rc(s, p, d) = 2.2 a.u. , Qc/q3(s, p, d) = (0.8, 0.9, 1.0) , Local component : (0.5, 0.5, 0.0)

s and p projectors reduced, d can be switched off.

 

 

 

In000

The In000 is designed to represent In+ character, in which case the rc should not be too much larger than ionic radius of In in it's 1+ state. In order to achieve this we found the neutral configuration is not suitable because the reasonable rc for it is too large. So we increase the inonicity of In till the rc fall back to 2.5 a.u..

 

Electronic configuration for all s, p, d potentials: 5s 1.50 5p 0.25 5d 0.25

rc(s, p, d) = 2.5 a.u. , Qc/q3(s, p, d) = (0.90, 0.95, 0.85) , the local potential is s.

 

 

 

K003

 

Electronic configurations : for s and p : 4s 0.75 2p 0.25

 rc(s, p) = 3.3 a.u. , Qc/q3(s, p) = (0.65, 0.65) ,  Local : s , non-local p component omitted.

 

K003 is a 3-term optimised pseudopotential. It was designed to be very economical when used in real space (non-local operation) code. This is because that it has only local potential (which is s), the s potential was made to be as close to p as possible, so that we may reasonably discard p projector under such approximation because the local (s) potential resemble (not very much) the p potential. The advantage of using such local-only potential in real-space code is that there is no need real space projector at all, which saves memory and speeds up the calculation.

 

 

 

Mg006

 

Configuration : 3s 2.0 (for s potential only)

rc(s) = 2.0 a.u. , Qc/q3(s)=1.00 , Local potential : s.

(So there is no non-local component in this potential.)

 

Tests:

Chales Randel has used this Mg006 together with O020 in inner shell spectroscopy calculation.

Also see Chapter VI.

 

 

 

N001

 

Electronic configuration : for s and p : 2s 2.00 2p 3.00 ; for d : 2s 1.00 2p 1.75 3d 0.25

rc(s, p, d) = (1.0, 1.4, 1.4) a.u. , Qc/q3(s, p, d) = (0.95, 1.065, 1.00) ,

Choice of local component : Minimum and no-crossing

 

Some extra infomations about N001:

 

  Purpose:

This N001 is generated to be used for NO molecule interacting with metal surface and also we want to see if it can also be used in Ba2NH crystal. Ionicity (charge state) of N in both

cases are the thing one will be interested, so we can not use a large core which makes potential more reference configuration dependent.

 

  Method :

Following the experience of generating and testing Carbon potential C009, and also due to the fact that they are both 2p element, we use the same strategy used in generating C009 (for more detail, please see relavent part of C009), namely 3-term optimisation with "minimum curvature" treatment at rc.

 

  Tests :

 

See C021.

 

  Expectation :

We expect this N001 works reasonably good in melocule, and hope it give good decsription of Nitrogen at least in the range of N- to N+.

 

 

N010

 

Electronic configuration : for s and p : 2s 2.00 2p 3.00 ; for d : 2s 0.75 2p 2.00 3d 0.25

rc(s, p, d) = 1.4 a.u. , Qc/q3(s, p, d) = (0.80, 1.05, 1.035) , Local : p . The d-projector is reduced.

 

Tests :

See C021

 

 

 

Na001

 

Electronic configuration : for s : 3s 1.00 ; for p and d : 3p 0.25 3d 0.25

rc(s, p, d) = (2.2, 2.2, 2.5) a.u. , Qc/q3(s, p, d) = (0.80, 1.05, 0.60) , Local : s

The p and d non-local parts can be turned off  (which is Na001a).

 

 

 

Ni001

 

Electronic configuration : for all s, p, d : 3d 8.00 4s 1.27 5p 0.73

rc(s, p, d) = 2.0 a.u. ,Qc/q3(s, p, d) = (0.74, 0.97, 1.17) , Local : mixed (0.2, 0.8, 0.0)

The s and p projectors reduced

 

 

 

O020

 

Configuration:  for s and p : 2s 2.00  2p 4.00 ; for d : 2s 1.00  2p 1.75  3d 0.25

rc(s, p, d) = 1.8 a.u. , Qc(s, p, d) = q3 + 0.25*q1 . Local : 0 0 0  (Mixed)

 

 

 

O020c

 

Electronic configuration : for s and p : 2s 2.00  2p 4.00 ; for d : 2s 1.00  2p 1.75  3d 0.25

rc(s, p, d) = 1.8 a.u. , Qc/q3(s, p, d) = (1.00,1.085,1.075) . Local: p.

Projector reduced, this pseduopotential has only s non-local projector

 

 

 

O020a

 

Electronic configuration : for s and p : 2s 2.00  2p 4.00 ; for d : 2s 1.00  2p 1.75  3d 0.25

rc(s, p, d) = 1.8 a.u. , Qc/q3(s, p, d) = (1.00,1.085,1.075) . Local: p.

 

 

 

O027

 

Electronic configurations: For s and p: 2s 2.00 2p 4.00 ; For d : 2s 1.00 2p 1.75 3d 0.25

rc(s, p, d) = 1.4 a.u. , Qc/q3(s, p, d) = (0.40, 1.10, 1.00).

Loncal potential: mix of s, p, d, minimum. (0.0 0.0 0.0)

 

Tests :

 

Convergence test: MgO (premitive cell, 1 k-point, ion fixed)

=================================================

Ecut         Etot(o2001Mg006)        Etot(O027Mg006)

-------------------------------------------------

200         -416.6554883           -407.7530943

300         -438.0174302           -427.9129811

400         -443.3917391           -439.7956222

500         -444.3537604           -448.6898144

600         -444.3706999           -450.0756426

700         -444.3731004           -451.3899518

800         -444.3732176           -452.0890654

900         -444.3734519           -452.2232181

=================================================

The (suggested) lowest reliable E_cut for O027 is 500 eV.

(for o2001, 350~400 eV)

 

 

Molecule test: CO (in a 7A box, 500 eV) (use C009 with O027)

 

Expremental bond length (1.128 A):

 

 TOTAL ENERGY IS      -584.2688296

 -------------------------------------------------------------------------

  SIGTO    0.041554   0.041526   0.041475   0.000307   0.000302   0.000297

 -------------------------------------------------------------------------

 -------------------------------------------------------------------------

 NSP ATOM     a1         a2         a3         Fx         Fy         Fz

 -------------------------------------------------------------------------

  1   1    0.000000   0.000000   0.000000  -0.018158  -0.014563  -0.008307

  2   1    0.093039   0.093039   0.093039   0.037726   0.018490   0.043561

 -------------------------------------------------------------------------

 

Bond length 1% larger:

 

 TOTAL ENERGY IS      -584.2615490

 -------------------------------------------------------------------------

  SIGTO    0.042617   0.042740   0.042582   0.001592   0.001554   0.001613

 -------------------------------------------------------------------------

 -------------------------------------------------------------------------

 NSP ATOM     a1         a2         a3         Fx         Fy         Fz

 -------------------------------------------------------------------------

  1   1    0.000000   0.000000   0.000000   0.756317   0.756195   0.757012

  2   1    0.093969   0.093969   0.093969  -0.756386  -0.766932  -0.753488

 -------------------------------------------------------------------------

 

From above CO tests in box, one sees the converged force changes sign

across the zero, so teh equilibrium bond length should be between 0%~1%.

[This is just luck! 2~3% bond length error is rather common.]

 

See also Chapter VII

 

 

 

O051

 

Electronic configuration : for s and p : 2s 2.00 2p 4.00 ; for d : 2s 1.00 2p 1.75 3d 0.25

 

rc(s,p,d) = 1.4 a.u. , Qc/q3(s,p,d) = (0.40, 1.11, 1.0325) . Local : p , d-projector reduced

 

 

Tests :

O2   molecule

Ecut = 600eV

 TOTAL ENERGY IS                -860.9490324

 -------------------------------------------------------------------------

 NSP ATOM     a1         a2         a3         Fx         Fy         Fz

 -------------------------------------------------------------------------

  1   1    0.000232   0.999858   0.999807   0.011481   0.008659  -0.007528

  1   2    0.087319   0.087621   0.087285  -0.010961   0.008701  -0.006431

 -------------------------------------------------------------------------

-> 1.21165 A 0.4% longer than expt (1.207 A, triplet state)

 

 

Ecut =  600eV (real space non-local)

 TOTAL ENERGY IS                -860.9491505

 -------------------------------------------------------------------------

 NSP ATOM     a1         a2         a3         Fx         Fy         Fz

 -------------------------------------------------------------------------

  1   1    0.999918   0.999888   0.999950  -0.011423  -0.010974  -0.012789

  1   2    0.087325   0.087364   0.087343   0.009342   0.010902   0.011508

 -------------------------------------------------------------------------

-> 1.21140 A  0.36% larger than expt.

 

 

Ecut =  500eV (real space non-local)

 TOTAL ENERGY IS                -855.2660696

 -------------------------------------------------------------------------

 NSP ATOM     a1         a2         a3         Fx         Fy         Fz

 -------------------------------------------------------------------------

  1   1    0.999483   0.999242   0.999741  -0.050190  -0.044376  -0.053428

  1   2    0.087474   0.087655   0.087220   0.051207   0.048678   0.054072

 -------------------------------------------------------------------------

-> 1.2188 A  0.98% larger than expt.

 

 

 

P001

 

Electronic configuration: For s and p potential: 3s 2.00 3p 3.00 ; For d potential: 3s 1.00 3p 1.75 3d 0.25

rc(s, p, d) = 1.6 a.u. , Qc/q3(s, p, d) = (1.00, 1.00, 1.00) . The local potential is d.

 

Comments:

A one k-point convergence test of InP (ZnS structure) suggested that 400 eV is sufficient to achive 0.01 eV convergence for the calculation. Most physical properties should require less plane-wave cutoff than 400 eV. (The test here used In000 and P001.) A more precise test on the InP premitive unit cell suggested when used with In000, the computed lattice parameter will be about 2% (or more, but not more then 3%) smaller than experimental value.

 

 

 

Pd000

 

Configuration for all s, p and d potentials: 4d 8.00 5s 1.00 5p 0.25

rc(s, p, d) = 2.4 a.u. , Qc/q3(s, p, d) = (0.60, 1.045, 1.14) . Local component: s.

 

Test : (Done by P.-J. Hu)

Calculated lattice parameter : 3.941 Angs. (Expt.: 3.89 Angs.) Error : 1.3%

 

 

 

Pt000R

 

Configuration for all s, p and d potentials (Reletivistic) : 5d 8.00 6s 1.00 6p 0.25

rc(s, p, d) = 2.4 a.u. , Qc/q3(s, p, d) = (0.40, 1.10, 1.11) . Local component: s.

 

Test : (by P.-J. Hu)

Calculated lattice parameter : 3.934 Angs. [Expt.: (1) 3.912 or (2) 3.923.] Error : (1) 0.56% or 0.28%

 

 

 

S000

 

This S potentail is generated having III-V system in mind, the core radius is chosen to be smaller than suggested covalent radius of S.

 

Electronic configuration for generating s and p potential : [core] 3s 2.00 3p 4.00

Electronic configuration for generating d potential: [core] 3s 1.00 3p 2.75 3d 0.25

rc(s, p, d) = 1.8 a.u. , Qc/q3(s, p, d) = (0.60, 0.90, 1.00) . Local potential: p.

 

Tests : (By Dr. Jian-Min Jin in Canada)

 

Two tests on molecules S2 and SiS for the S potential have been done. The results suggest that the potential works well. Here are the results (the molecule is confined in a cubic of side length of 7 Å; reciprocal-space sampling utilizes only Gamma point, i.e., k = (0,0,0); energy cutoff is 350 eV):

 

-------------------------------------------------------------------------

              | bond length (A) |  total energy (eV) | bond length* (A)

-------------------------------------------------------------------------

    S2        |  1.88495        |  -557.9284587      |  1.8892

-------------------------------------------------------------------------

    SiS       |  1.92295        |  -386.2201159      |  1.9293

-------------------------------------------------------------------------

 

The `*' designates experimental value [D.R. Lide, in: CRC Handbook of

Chemistry and Physics,  (CRC Press, Boca Raton, 1992) p. 9-22.].

 

 

 

Sb000

 

Electronic configuration : for all s, p, d : 5s 2.00 5p 1.75 5d 0.25

rc(s, p, d) = 2.5 a.u. . Using only two Bessel function terms for p potential.

 

Qc/q2(s)=1.00, Qc/q2(p)=1.00, Qc/q3(d)=1.00 . Local : s.

 

 

 

 

Si001

 

Electronic configuration : 3s 2.0  3p 2.0

 

rc(s, p) = 1.89 a.u. , Qc/q3(s, p) = (1.00, 1.00) . Local potential : p .

 

 

 

 

Si014

 

Configuration : for both s and p : 3s 2.0 3p 2.0

 

rc(s, p) = 1.89 a.u. , Qc/q3(s, p) = (0.75, 1.00) . Local potential : p .

 

 

 

Si017

 

Electronic configurations : for s and p : 3s 2.00 3p 2.00

rc(s, p) = 1.89 a.u. , Qc/q3(s, p) = (0.60, 0.60) . Local : p .

 

Tests : (Done by Dr. R. Perze)

See Chapter VI.

 

 

 

Si021

 

Electronic configurations : for s and p : 3s 2.00 3p 2.00 ; for d : 3s 1.00 3p 0.75 3d 0.25

 

rc(s, p, d) = 1.4 a.u. ,  Qc/q3(s, p, d) = (0.60, 0.90, 0.85) . Local : s .

 

 

 

Sr002

 

Ionised pseudopotential for Sr2+

 

Electronic configurations : for s and p : 4s 2.00 4p 6.00

rc(s, p) = (2.5, 2.2) a.u. , Qc/q3(s, p) = (0.80, 0.90) . Local : p .

 

 

Tests:

 

E_cut = 500 eV Grid:36x36x36

2 k-points (0.75,0.25,0.25) and (0.25,0.25,0.25)

 

On SrO (Sr002 and O020c)

=======================================================

 Da/a0       E_tot              stress_xx  stress_yy  stress_zz

---------------------------------------------------------------

-3%     -5072.4881224  SIGTO   -0.028129  -0.028155  -0.028154

-2%     -5072.5762944  SIGTO   -0.004138  -0.004162  -0.004161

-1%     -5072.5885200  SIGTO    0.015823   0.015800   0.015801

 0%     -5072.5165871  SIGTO    0.033365   0.033343   0.033344

=======================================================

 

 

Te000

 

Electronic configurations : for s and p : 5s 2.00 5p 4.00 ; for d : 5s 1.00 5p 2.75 5d 0.25

rc(s, p, d) = 2.2 a.u. , Qc/q3(s, p, d) = (0.80, 0.875, 1.00) . Local : mixed (0.5, 0.5, 0.0).

 

 

 

Ti002

 

Electronic configuration : for s and "d" :  3d 2.00 4s 2.00 ; for "p" :  3d 2.00 4s 0.75 4p 0.25

rc(s, p, d) = 2.5 a.u. , Qc/q3(s, p, d) = (0.60, 0.80, 1.15) . Local : s .

 

 

Tests :

 

TiO2

 

Using 500eV cut-off, 4 k-points, 6 atom unit cell rutile structure. Scaled lattice parameter (c/a ratio fixed). Total energies and stresses are the followings : (pseudopotential used are indicated as titles)

 

Ti002 O020a

 

 a0 (c/a fixed)

=======================================================

 Da/a0       E_tot              stress_xx  stress_yy  stress_zz

---------------------------------------------------------------

 0%     -1904.1400470  SIGTO   -0.020862  -0.020273  -0.009795

 1%     -1904.1610073  SIGTO    0.024434   0.024963   0.049211

 2%     -1904.1029261  SIGTO    0.062596   0.063073   0.097293

 3%     -1903.9627076  SIGTO    0.095365   0.095791   0.138843

 4%     -1903.7526223  SIGTO    0.123017   0.123396   0.173744

=======================================================

 

Ti002 O020c

 

a0 (c/a fixed)

=======================================================

 Da/a0       E_tot              stress_xx  stress_yy  stress_zz

---------------------------------------------------------------

 0%     -1902.9977017  SIGTO   -0.071716  -0.071415  -0.068734

 1%     -1903.1083358  SIGTO   -0.019823  -0.019561  -0.002319

 2%     -1903.1296108  SIGTO    0.023888   0.024112   0.051941

 3%     -1903.0600031  SIGTO    0.061250   0.061436   0.098758

 4%     -1902.9138698  SIGTO    0.092812   0.092960   0.138158

=======================================================

 

Ti002 O020

 

a0 (c/a fixed)

=======================================================

 Da/a0       E_tot              stress_xx  stress_yy  stress_zz

---------------------------------------------------------------

-2%     -1907.9598537  SIGTO   -0.106228  -0.105886  -0.133441

-1%     -1908.1483383  SIGTO   -0.049312  -0.049011  -0.058676

 0%     -1908.2324397  SIGTO    0.000306   0.000565   0.004693

 1%     -1908.2131075  SIGTO    0.043232   0.043448   0.061531

 2%     -1908.1167449  SIGTO    0.079377   0.079553   0.107886

=======================================================

 

 

 

V000

 

Electronic configuration : for s and d : 3d 3.00 4s 2.00 ; for p : 3d 3.00 4s 0.75 4p 0.25

rc(s, p, d) = 2.5 a.u. , Qc/q3(s, p, d) = (0.60, 0.80, 1.155) . Local : s .

 

 

 

W001R

Reletivistic atomic calculation. Configuration for all s, p and d potentials: 5d 4.00 6s 1.00 6p 0.25

rc(s, p, d) = (2.6, 2.5, 2.4) a.u. , Qc/q3(s, p, d) = (0.60, 0.90, 1.10) . Local component : s .

 

Test : (Done by Dr. P.-J. Hu) (at Ecut = 500eV)

Calculated lattice parameter 3.145 Angs. Expt. 3.89 Angs. (Error 1.3%)

 

 

 

Zn002

 

Electronic configuration: for s, p and d : 3d 10.00 4s 1.27 4p 0.73

rc(s, p, d) = (2.0, 2.0, 2.4) a.u., Qc/q3(s, p, d) = (0.78, 0.965, 1.2125) . Local : (0.2,0.8,0.0) (mixed s and p with coefficients 0.2 and 0.8) . Projector reduced, only the d part is non-local.

 

 

 

Zr001

 

Electronic configuration : for s and d : 4d 2.00 5s 2.00 ; for p and d : 4d 2.00 5s 0.75 5p 0.25

Used Kerker construction for s the component .

rc(s, p, d) = (2.7, 2.7, 2.5) a.u. , Qc/q3( p, d) = (0.80, 1.10) . Local : s .

 

 

 

 

 

 

Acknowledgements

 

I want to express my hart-felt appreciation to all the distinushed colleagues, who have constantly discussed with me the potential problem and the problem of (pseudo) potentials. From their insightful research and ambitious projects, I have always had chances to improve my understanding of pseudopotentials in their theory and usage. Among those people the Dr. Milman helped and inspired me very much as friend and teacher during the period of my study.

 

My deep gratitude also goes to the leading staff members of the research group, (my supervisor) Prof. Heine and Dr. Payne, as well as research associate Dr. Lin, who gave me the chance to take over the reponsibility for generating pseudopotentials as a service in the team.

 

 

 

 

 

 

 

 

 

References

 

[H.1]

D. C. Harris and M. D. Bertolucci, Symmetry and Spectroscopy - An Introduction to Vibrational and Electronic Spectroscopy, Dover (1978)

 

[M.1]

V. Milman, alkali halide studies, private communication.

 

[P.1]

R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules, Oxford University Press (1989)