CHAPTER SIXTEEN

Some Specific
Aplg)hcatlons of
Statistical
Distribution Laws

In the last chapter we derived expressions for the statistical distribution laws
of quantum particles. These expressions contain a parameter a that must be
determined in each specific case. The general approach for doing it is
discussed in this chapter. The important cases of a Fermion gas and a photon
gas are emphasized.

16.1 THE MAXWELL-BOLTZMANN DISTRIBUTION

In the case of particles obeying Maxwell-Boltzmann statistics we obtain
directly from (15.46) after using 8 =(kT)~', T(3)=v7 /2:

2%/ 2Vm(2m)"/?
a=In h31(v ) (kT)*"* (16.1)

where N is the number of particles, m is their mass, and V is the volume to
which they are confined.
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Figure 16.1 Sketch of the Fermi-Dirac distribution
function at absolute zero and at a low temperature.
The width of the transition region between f(&)=1
and f(e)=0 is of the order of k7.

transition from occupied states is “fuzzed” over a region of width ~£T, as
shown in the figure.

At energies € such that (e — p)> kT, f(e)~ ¢~ "#T)/*T_ This exponen-
tial dependence of the occupation probability is the same as that of the
Boltzmann law (16.3) so that in this limit the statistical behavior of fermions
and of classical particles is similar.

To evaluate the chemical potential p1(0), we consider the case of a free
electron gas that is confined to a volume V. The number of available electron
states in de is obtained from (15.44):

1/2
g(e)a'£=§ﬂ%2éL-e'/2d£ (16.7)

[The factor of 2 difference between (16.7) and (15.44) is due to the fact that,
in the case of electrons, each spatial wavefunction is associated with two
associated quantum states, one with m, =4 “spin up” and one with m, = —3.]
The number of occupied states in the energy interval de is given by the
product of the number of such states g(e)de and f(e), the occupation
probability. Since the total number of electrons N is fixed, it follows that

o0
[ e()(e)de=N
which, using (16.6) and (16.7), becomes

s 8r¥m(2m)'/?

- fwe'/z—-——l———de (16.8)
0

ole—m(MI/KT 1

At zero temperature f(e)=1 for e<p, and f(¢)=0 for > p, so that the last
integral becomes

. o de 1 (0)
1/2___=f 1/2 jp—2,,3/2
71-1310.’(; e OAT 11 g e/%de=§p/*(0)
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Figure 16.2 Plot of density of states g(€) and the density
of electrons g(¢)f(e), as a function of energy. At absolute
zero the states up to p(0) are filled. The dotted curve
indicates the density of filled states at a temperature

T < 1(0)/k.

and after substituting in (16.8)

wo)=1 [37# (5 ]2’ ’ (16.9)

The chemical potential p, often called the Fermi energy, plays a key role
in the theories of metals and semiconductors. The behavior of many metals
can often be explained to a good approximation using a model of a free
electron gas. According to this model at very low temperatures all the electron
states with energies up to e=p are filled, and those above it are empty. At
higher temperatures, levels within ~ k7 of p are only partially filled. This
situation is depicted in Fig. 16.2.

As an example we calculate the chemical potential (Fermi energy) of a
metal with 10?° electrons/m®. Using this result in (16.9) gives

1(0)=1.257 X108 joules
=7.85¢eV

(It is useful to recall here that it is the Pauli exclusion principle that
causes the energy levels in the metal, even at 7 =0, to be filled up to €=7.85
eV. In a system of bosons, for example, where a given state may be occupied
by any number of particles at zero temperature, the particles will all
“condense” to £ =0). Electrons near the top of the occupied states move with
velocities 5 such that at 7=0

ymo = p(0)

In the above example, v, ~1.67X10° cm/s. It is important to note that these
high velocities persist even at zero temperature, and the explanation of their
existence is purely quantum mechanical.
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A very simple yet important significance of the chemical potential u(7")
is that it corresponds to the increase of the total energy of the system when one
particle is added to it, that is,

W(T)= o [ee(err(e) de (16.10)

This statement follows directly from the Fermi-Dirac distribution law (16.6). - ‘
Since the states up to u(7") are occupied [here we ignore the small transition
region of width ~ kT near pu(7T')], any additional particle must be placed at
an energy (7). It will be assigned as an exercise to show that at 7=0

oFE au(0
m=%—'§§v—)=u(0) (16.11)
where E = [}@¢g(¢) de is the energy of the N-particle system (at zero temper-
ature). It follows that if two materials with different chemical potentials are
brought into contact with one another, particles will flow from the region of
high p to that of low p. Equilibrium will be reestablished when the chemical
potential has a single uniform value throughout the sample, since otherwise
the total energy may be lowered by transferring particles from regions of high
chemical potential to those where it is lower._,

The general dependence of (1(7") on temperature can be obtained using
(16.8ﬂ)§ taking T #0. We will not derive the result (the interested reader can
consult any basic text in statistical mechanics or solid state physics'), but

merely state it:
u(T)zu(o)[l—(’{—;-)( ) (16.12)

#(0)

Another important consequence of the Pauli exclusion principle mani-
fests itself in the heat capacity of an electron gas. Viewed as a classical
particle, each electron would have a total energy 347/2, so that the energy
per unit volume in a sample with an electron density (N/V)is U = 3(N/VKT
and the heat capacity per unit volume is C =9U/9T = 3(N/V )k. This result
is bigger by some two orders of magnitude than the measured values of the
heat capacity at room temperature.

We can understand the nature of this discrepancy by referring to Fig.
16.2. The total energy of the electron system is given by

E=[ " g(e) f(e)ede

Most of the value of this integral comes from the fully occupied states
[ f(e)=1] below the chemical potential. Their contribution to U is thus a

ISee, for example, C. Kittel, Introduction to Solid State Phystcs, 5th ed. (J. Wiley & Sons, New York,
1976).
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constant that does not depend on temperature, so that their heat capacity
C=09E/dT

is zero. The main contribution to C is thus due to the fraction ~ k7/p of the

electrons with energies within £7 of the chemical potential . These may be

considered approximately as classical particles with an energy per particle of

3kT. The contribution to the total energy due to these electrons is, per unit

volume,

kT

E'~(N)( kT)”(O)

14

so that the heat capacity becomes

_OE_3E _(N),
C=ar~ 3T_3(V) 2(0)

An exact analysis? yields

=

o (ﬁ) 2 (16.13)

] 1(0)

In the case of the numerical example considered above and for T =
300°K, kT/pm(0)~ 3. This factor is of the order of magnitude of the
discrepancy between the experimental data and the prediction of classical
theory.

16.3 THE BOSE-EINSTEIN DISTRIBUTION

We conclude this chapter by considering the case of the Bose-Einstein
distribution law (15.25). To determine a in this case, one must invoke, as in
the case of the other distributions, the constancy of the number of particles in
the system. This involves a good deal of specialized calculation. There exists,
however, a very important yet simple case we can use to demonstrate the
basic principles. This is the case of electromagnetic radiation at thermal
equilibrium. We have already considered this case in Chapter 12. In that
treatment, the elementary particles of the system were the radiation modes
(oscillators) that, due to their distinguishability, obey the Boltzmann distribu-
tion law (16.2).

We may, alternatively, consider the photons, rather than the oscillators,
as the elementary particles of the radiation fields. The one-particle states are
taken as the electromagnetic modes

Y(r)oce®r (16.14)

which were considered in Section 12.2. A “particle” (photon) in state k thus
has an energy hv (v = kc/2). The photon is characterized, in addition to the

2Kittel, ihid.
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propagation vector k, as well as by its “spin” state s=1, m;==*=1. The
quantum numbers m, = *1 describe the two senses of circular polarization
associated with a given direction of propagation k. The photons being
indistinguishable and possessing an integral (s = 1) spin obey the Bose—Einstein
distribution law (15.25):

e &

¥ ea+e,//cT_l

(16.15)

where we used 8 =(kT)~!. We recall that the parameter a was introduced
into the formalism [see for example (15.18)], in the process of insuring that
the number of particles N in the system be a constant. The total number of
photons (particles), however, is not restricted.

(This is a very subtle point and deserves amplification. If the field energy
is increased, then, using the radiation modes as the basic “particles” of the
system, we need merely increase the energy of the modes, keeping their
number a constant. If we choose instead to take the field particles as photons,
then an increase in the excitation of the system results in an increase of the
number of photons per mode. The number of photons is thus not conserved.)

Since the number of particles is not fixed, the auxiliary condition (15.13)
that gave rise to a in the distribution laws is now meaningless, so that in
(16.15) a=0 and

_ &

n=—=—25
5
e /KT |

(for photons) (16.16)

Let g, in (16.16) be the number of states k whose frequcncxcs lie w1thm
an interval dv centered on ». The number of such states was given by (12. 35)
as

_ 8mv?a’V

=
‘:3

dv

The number of particles (photons) in this range is from (16.16):

_ 8mn’V d
"‘_ca(ehv/n_l) v

Multiplying the last expression by the energy A» per photon, we obtain (after
dividing by the enclosure volume V') an expression for the energy density of a
black body radiation field due to frequencies between » and v + dv:

_ 8mhvia®
p(l’)dl’—mdl’ (1617)

14231

in agreement with (12.37).
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PROBLEMS

1.

Show that at equilibrium the “temperature” of a mixture of three types of
particles is the same.

Derive the Fermi energy of a two-dimensional electron gas confined to an
area of a X b.

Show that the two orthogonally plane-polarized states of an electromag-
netic wave propagating along some arbitrary direction can be considered,
equivalently, as two waves with opposite senses of circular polarization.

Hint: Show that we can express each representation as a linear super-
position of the modes of the other.

Prove Eq. (16.11).
Derive the black body energy density formula (16.17)
o(») = 8mhv3n3
(M —1)

considering the electromagnetic modes, rather than the photons, as the
“particles.”

Clve: Are the modes distinguishable?
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