CHAPTER SEVENTEEN

The Band Theory
of Electrons

in Crystals

We have considered in early chapters of this book the quantum properties of
single particles and of some two-particle systems. These included the hydro-
gen atom (Chapter 7), a particle in a potential well (Chapter 4), and as an
example of a two-particle system, the helium atom (Section 8.2). In the last
chapter we discussed the statistical properties of a many-electron gas.

In this chapter we consider the problem of an electron (or particle) in a
spatially periodic potential field. The analysis is relevant to the electronic
properties of crystals.

We encounter here, for the first time, some concepts of central impor-
tance in solid state physics. These include the ideas of forbidden energy gaps
and of Brillouin zones. These concepts reflect the lattice periodicity and arise
in other branches of physics that involve wave propagation in periodic media.
Some examples are: The propagation of acoustic waves in crystals! and of
electromagnetic waves in periodic waveguides.

17.1 THE KRONIG-PENNEY MODEL

The basic features of the wavefunctions of electrons in crystals may be
demonstrated with the aid of the one-dimensional Kronig—Penney model.
The potential field used in this model is shown in Fig. 17.1. The plot is that of
the potential energy profile V(x) experienced by a single electron. The
wavefunction Y(x) of an electron in this model obeys the Schrédinger

'C. Kittel, Introduction to Solid State Physics, 5th ed. (John Wiley & Sons, New York, 1976).
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Figure 17.1 A one-dimensional periodic potential.
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Before proceeding to solve for Y(x), we consider some general properties
of wavefunctions in periodic media. According to the Floquet theorem in
mathematics (also known as the Bloch theorem in solid state physics?), the
solution of the wave equation in a periodic medium is of the form

Yk (r) = ug(r)e™ (17.2)

where ug(r) has the same periodicity as the medium. In one dimension (17.2)
becomes

Y (x) =ug(x)e® (17.3)
where
ug(x+A)=ug(x) (17.4)

A is the periodic distance.
To prove that the wavefunction Y(x) has the Bloch form (17.3), we
introduce the translation operation 7}, defined by

Ty f(x)=f(x+A) (17.5)

where f(x) is any arbitrary function. We will first prove that ’i’A commutes
with the Hamiltonian §C. Since ¥(x) is an eigenfunction of ‘jC, ‘jC¢(x)=
E(x), where E is the energy of the electron. Using (17.5) we write

7‘\q/(j\C‘I’("): ETA"’(X)

=Ey(x+A)
HTaw(x)=Hy(x+ A)
=Ey(x+A)
so that
St —T,9=0

2F. Bloch, Z. Physik 52, pp. 555-560 (1928).
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and 9 and TA commute. Two commuting operators have common eigenfunc-
tions so that y( x) can be chosen to be an eigenfunction of TA as well as of
(see the discussion in Chapter 3). Let the corresponding eigenvalue be ¢ so
that

Tw(x)=¥(x+A)
= cy(x) (17.6)
where ¢ is some constant. Then
Y(x +gA)=cty(x) (17.66)
To determine ¢ we need to impose boundary conditions on {(x). The one

commonly used® is that Y(x)=y(x + L), where L = NA is the length of our
one-dimensional crystal:

Y(x + NA)=c"Y(x)

=¥(x) (17.7)
so that
CN=1, C=¢C"/N)(g=0,1,2,....N—1) (17.8)
A solution satisfying (17.3) and (17.7) can be taken as
\Pg(x)=ei2""(‘/NA)ug(x) (17.9)
where u,(x) is periodic in A. Defining
K= i;f—%g(g=0,tl,i2,...) (17.10)
the total eigenfunction can thus be written as
Y (x) = ug(x)e® (17.11)

which is the Bloch form.
We are now ready to proceed with the solution of the Schrédinger
equation:

dx2 [E V(x)]y=0 (17.12)

Since V(x) has a constant value of ¥, in regions 1 and is zero in regions 2, the
solution of (17.12) in each region is a superposition of the two linearly
independent exponential solutions:

Y(x)=a,ebrx7"M 4 p e~kx=1A) in regions 1 (17.13)
Y(x)=ce*x7n) 4 g ~ik(x=nA) in regions 2 (17.14)
with
2m(V,— E
k,=——~(—0——)— (17.15)
h
V2mE
k= ;" (17.16)

3C. Kittel, Introduction to Solid State Physics, 5th ed. (John Wiley & Sons, New York, 1975).
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Our next task is that of solving for the coefficients a,, b,, and d, that uniquely
determine Y(x). Requiring that Y(x) and dy/dx be continuous at x = nA
yields
a, +b= Gy A H d, s e*"

kia, — kib, = ity e *2 N — ikyd, et (17.17)
while the same boundary conditions applied at x= nA+t=(n+1A—s
gives

Gp1€ * g = 8, g6 F by e

ke, s 16”2 — ikye'*2d, = kya, e 5= kiby et (17.18)

Equations (17.17) and (17.18) can be expressed using matrix notation as

1 1 a, e—isz Cisz B
=] K ; ky (17 19)
1 =113y, i-Remiteh  —jReikah || d '
kl kl +<1
and
C—ik2: e”‘z-‘ ¢ 1 e-—kl.r ekl.r @i
—ikos ikys = 'kl —kys k s
e ks —othe dyiy —z-k—2-e i zée"' bty
(17.20)

By obvious matrix manipulation (pre- and post-multiplication) we can relate
(am bn) to (an+1’ bn+l):

an A B an+l
b, _‘C p|ls., (17.21)
where
k, k
A=ty cosk2t+l(—2-—-—’-)sink2t]
2\ kK
B=¢"v| < £—+f—‘ kot
e kT E sin k,
k
C—e"‘"[—-l(—g-l'——l)sinkzt]
ky 2
1 [k, &k
— ks 2 2_1 1
D=c¢ [costt 2(k| k2)51nk2t] (17.22a)

The matrix (4, B,C, D) is referred to as the unit cell transformation matrix.
From (17.22a) it follows that

AD— BC=1 (17.226)

that is, the transformation matrix is unimodular.
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Using (17.21) we can obtain the coefficients a,, 6, in any unit cell once

their values in some cell are known. We can then solve—using (17.19)—for

¢,,d,, givena, |, b _,.

Consider the basic solution of y(x) in region 1 of the nth unit cell, Eq.
(17.13):

‘P(x):' anek,(x—nA) + b"e-lq(x—nA)
so that
‘P(x+ A):an+lekl[x+A—(n+l)A] +bn+1€_k'[x+A_("+l)A]
- anHe"'("_"A) + bn+le—'kl(xn—/\)
The Bloch form of y(x) imposed by the periodicity was given by (17.11) as
Y(x)=Y(x + A)eik
The last two forms of y/( x) can be reconciled provided

a,

b

n

Apt

lr

n+1

KA (17.23)

which, using (17.21) and then letting n + 1 - n, leads to
A B
b

all

bﬂ

a,

b

n

:e—xKA

(17.24)

Equation (17.24) is in the form of the general operator eigenvalue problem
An, = a,u,

where the matrix (4, B, C, D) can be considered as a matrix representation of
the unit cell translation operator in a 2X2 function space, and the column
matrix (a,, ,) is the eigenvector. The factor exp(—iKA) is thus the eigen-
value of the matrix. By subtracting the right side of (17.24) from the left side,
we obtain

A— ¢ KA B
(& D — KA

a

n

b

n

=) (17.25)

which is a set of two homogeneous equations for the unknowns a, and 4,. The
condition for the existence of nontrivial solutions is that the determinant
vanish. After using (17.22a), this leads to

e~*iah =4(4+ D)= i{1-[4(4+D)]"}"”* (17.26)

where the 1,2 subscripts correspond to + and — on the right side, respec-
tively. The eigenvectors corresponding to the eigenvalues (17.26) are obtained
by substituting (17.26) in (17.25), leading to

B
=N’e-,x,,2A_1’ (17.27)
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where N is a normalization constant to ensure that [y y* dV =1. Given a,
and b, we can use (17.13) to write the eigenfunction Yx(x) in region 1 of the
nth unit cell:

\l’K(x) — N[(aoek,(x—nl\) + boe—kl(x—nA))e—iK(x—nA)]eil(x (1728)
The expression for y( x) has the required Bloch form (17.11), since the portion

of the function within the square brackets is periodic in A. The propagation
constant K is obtained from (17.26):

cos(KA)=4%(A+ D) (17.29)

which is the basic dispersion relation for the propagation of the wavefunction.
Using the specific form of 4 and D (17.22), we obtain

k2_k2
cos(KA)=cos(k2t)cosh(k1:)+sin(k2t)sinh(kls)( ék p 2) (17.30)
1k2

A contemplation of the dispersion relation (17.30) is in order. The right
side is, according to (17.15) and (17.16), a function of the particle energy
E = #2k2 /2m. Given any value of E, we can thus use (17.30) to obtain KA (to
within a multiple of 27). We distinguish between two regimes:

(a) Values of energy E such that
13(4 + D)I<1 (17.31)

It follows from (17.29) that in this case K is real and Y, (x), according to
(17.28), is a (modulated) propagating wave. These regions of E are
referred to as “allowed.”
(b) Values of E such that
134 + D)I>1 (17.32)

Here Icos KAI>1 and K must be complex. Since 3 (A + D) is real, it
follows that i
K=—+iK; (m==xw,27,,..) (17.33)

[The simple proof of (17.33) is assigned as a problem.] In this regime the
factor exp(iKx) in (17.28) becomes

exp(iKx)=¢'""/M*exp(—| K;|x)

and the Y (x) is an exponentially evanescent function. In the interior of
a large crystal yg(x) is thus zero. (The solution corresponding to
exp(| K;|x) is ruled out, since it leads to unphysical solutions that
increase exponentially without limit.

The energy intervals for which Ié(A + D)I> 1 so that K is complex are
referred to as the forbidden energy gaps. No electrons with “forbidden” energies
can “exist” in the interior of a large crystal. In practice, we can find such
electrons only within a few times K; ' from an interface or some other
discontinuity in the crystal structure.
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Figure 17.2 (b) A schematic representation of the eigenfunctions y, (odd
symmetry) and ), at the edge of the forbidden gap, that is, KA = mm, K, =0. {,
has its nodes inside the potential barriers, while {, has its maxima inside them.
The eigenenergy E, of y, is thus lower than the energy E, of y,.

A typical plot of E vs. K (and K;) obtained from (17.30) is shown in Fig.
17.2a. We notice that the decay constant K| is maximum at midgap.

The condition KA = mx that, according to (17.33), marks the boundary
of a forbidden gap, is formally equivalent to the one-dimensional Bragg
condition for X rays.* When this condition is satisfied, the reflections of the
electron wavefunction y(x) from neighboring unit cells are in phase and
reinforce each other since the round-trip phase delay is 2 KA = 2mmr. Under
these conditions Y (x) is strongly reflected and cannot “penetrate” into the
bulk of the crystal, which results in the evanescent behavior of (17.33).

The perfect reflection of the particle wave that occurs when KA =mmw
causes the wavefunction to behave like a standing wave rather than a running
wave. (A standing sinusoidal wave, we recall, results from the interference of
¢'** and ¢~"¥*)) There are two independent standing wave solutions corre-
sponding to the same value of K= mm/A —one even and one odd—since the
eigenfunctions must possess definite parity. Since one of these two functions
has its extrema inside the potential barriers, its eigenenergy E, is higher than
that of the second function that has its nodes at the barriers. There are thus
two eigenfunctions with the same value of K=m/A but with two different
energies. These two energies E, and E, in Fig. 17.2 correspond to the top and
bottom of the forbidden gap. The schematic behavior of the two eigenfunc-
tions at the edge of the gap is illustrated in Fig. 17.25.

The region — 7 < KA < is called the first Brillouin zone.> The two
regions 7 < KA <2m and —27 < KA < — 7 are designated collectively as the
second Brillouin zone, and so on.

Since the dispersion relation (17.30) only determines KA to within 2m,
m being an integer, and since Y (x) as given by (17.28) is invariant when K is
replaced by K+ m(2m/A), we may “collapse” the dispersion diagram (Fig.
17.2) to the interval —7/A < K<m/A by shifting the dark portions of the
curves horizontally by (27/A)! (! =some integer). The result, known as the
reduced zone energy band diagram, is shown in Fig. 17.3.

*See Kittel, ibid.

SL. Brillouin is responsible for many of the basic concepts involving propagation in periodic
media. See, for example, his book Wave Propagation in Periodic Structures (McGraw-Hill, New York,
1946).
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Figure 17.3 A reduced zone band diagram. The numerical
designation corresponds to Fig. 17.2.
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Figure 17.4 The behavior of the wavefunction of an
electron whose energy is inside the first forbidden gap.
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A schematic plot of the wavefunction Yg(x) (17.28) for an energy E
somewhere in the first forbidden gap (KA =7 +iK) is shown in Fig. 17.4.
Note the phase reversal [exp(iKA)= —1] in each unit cell. The basic
behavior of Y4( x) is one of sinusoidal variation in region 2 and exponential in
region 1. The whole pattern fits under an evanescent envelope exp(— K;X) so
that it decays quickly upon penetration into the bulk of the crystal and is thus
associated with “surface electron states.”

17.2 THE MULTIELECTRON CRYSTAL

The solution of the Schrédinger equation in a periodic potential field resulted
in the one-particle eigenfunctions (17.28)

Y (x) =ug(x)e™ (17.34)

and the associated energy Ej. If we neglect the interaction between electrons,
we can treat the case of a real crystal with many electrons by associating with
each allowed value of K one electron, until all the electrons are used up.

In the deliberations leading to (17.10), we showed that in a (one-
dimensional) crystal consisting of N unit cells, the allowed set of K numbers is
restricted to the set

2@g 2w

K=5r=7¢ (£=0,£1,%2,..)

so that two adjacent K numbers are separated by AK=27/L. These are
shown as dots in Fig. 17.5. Since the length of a Brillouin zone is 27/ A there

are
' 277{A_211/A__IL_N
AK ~2n/L A

allowed K values in each zone. Since with each K value we may associate 2
spin states (m, = = 1), each Brillouin zone can accommodate 2N electrons,
where N, we recall, is the number of unit cells in the crystal. If the number of
valence electrons per unit cell® is 2, then the first zone is exactly full. If the
number is 1, the zone is only half full. In general, an even number of electrons
per unit cell leads to fully occupied zones, while an odd number requires that
the uppermost zone (band) is only half full.

When an electric field is applied to a crystal with an even number of
valence electrons per unit cell so that the uppermost Brillouin zone is filled
with no electrons left over for the next higher zone, as in Fig. 17.5, there is no
current flow. This astounding fact follows from the symmetry of a filled band.
For each electron moving to the right (KX>0), there is a corresponding
electron with (K <0) with an equal but oppositely directed velocity,” so that

®We assume that the inner atomic electrons are tightly bound and do not play a significant role in
the electronic conduction process.

"The more precise explanation of this fact should use the concept of the electron group velocity,
which is introduced in Section 17.3.
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