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Figure 17.5 In an insulator (which includes the case of an
intrinsic semiconductor at very low temperatures) all the
quantum states in the valence band are occupied by
electrons (black dots). All the energy bands lying above the
valence band, of which only one (the conduction band) is
shown, are empty.

the sum of the two velocities, hence the currents, cancel. The crystal is thus an
insulator. This exact balancing on a one-to-one basis of electrons with positive
K values by those with negative K numbers is disrupted by the application of
an electric field to a crystal with a partially filled band, so that a net current
flow results, that is, the crystal is metallic.

We thus find that the radically different conduction properties of crystals
depend fundamentally on the crystal structure—that is, number of valence
electrons per unit cell. As an example of metallic behavior we may take the
case of sodium. The crystal is body centered cubic. Its Brillouin zone contains
two states for each atom of the crystal. Each sodium atom, however, contrib-
utes but one 3s electron. The band is consequently only half full and the
crystal is highly conductive.

Sodium chloride (NaCl) is a good example of an insulating crystal. The
unit NaCl associated with each unit cell has 28 electrons, which is an even
number. It follows that the topmost occupied band is completely full.

In crystals with an even number of electrons per unit cell, one usually
refers to the uppermost fully occupied band as the valence band and to the next
higher band that is empty as the conduction band. The energy separating the
extrema of these bands—that is, the smallest energy separation—is called the
energy gap E,.

Now our statement about the valence band being fully occupied while
the conduction band is empty is strictly true only in the limit of zero
temperature. At finite temperatures it follows from the Fermi~Dirac distribu-
tion law (16.6) that some electrons are to be found in the conduction band.
Each such electron must leave an unoccupied state (kole) in the valence band.
An application of an electric field will now cause a current flow, since the
bands are not perfectly full or empty, so that crystals with sufficiently small
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values of E,, where the excitation of carriers across the gap is appreciable, are
called semiconductors. Some of the better known and widely used semicon-
ductors are crystals of Si (£, =1.1€V), and GaAs (£, =1.45¢V).

The conductivity of undoped semiconductors, unlike that of metals,
depends on excitation of electrons across an energy gap and is thus a strong
function of temperature, disappearing altogether at 7" =0, since according to
(16.6) at zero temperature the valance band is completely full.

As mentioned above, the application of an electric field to a semiconduc-
tor or a conductor causes a net flow of charge that is due to the unbalanced
motion of the electrons in the conduction band, in the case of semiconductors,
and valence bands. Since the number of occupied states in the valence band is
typically many orders of magnitude larger than that of the vacant states, it is
a convenient matter of bookkeeping to consider the valence band as com-
pletely full with electrons and to add to it a number of positive charges equal
to the actual number of vacant states so as to preserve the actual total
electronic charge in the valence band. Since the fully occupied valence band
does not contribute to the current flow, we can attribute it solely to the
fictitious positive charges called “holes.”

In the case of a pure (“intrinsic”’) semiconductor, the number of conduc-
tion band electrons and holes is equal, since each conduction band electron
leaves behind a vacancy in the valence band. This situation is depicted in Fig.
17.6. The incorporation of impurity atoms into the crystal can change this
balance and leads to crystals whose conductivity is dominated by conduction
band electrons; that is, the number of electrons far exceeds that of the holes
( N-type semiconductor), or by valence band holes ( P-type).

® Occupied state
0O Empty state

Conduction band

Valence band

K

Figure 17.6 A semiconductor. The energy gap E, is small
enough so that thermal excitation elevates a sizeable number
of electrons to the conduction band. Occupied states are
shown as black dots, while empty ones are white. The
conductivity is due to the electrons in the conduction band as
well as to the missing electrons (holes) in the valence band.
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The control of the conductivity type of a semiconductor (/N or P) is the
basis for the operation of the transistor, the semiconductor laser, and other
devices currently changing the face of the electronic and optical fields. These
topics are considered in Chapter 20.

17.3 THE MOTION OF ELECTRONS IN CRYSTALS

The classical motion of a pointlike electron is not directly compatible with the
quantum mechanical behavior of an electron described by a Bloch eigenstate

V(x,) = g (x)e K Ext/D) (17.35)

This is due to the fact that Y (¢) is distributed over the whole volume of the
crystal and is not localized. To pinpoint an electron we need to describe its
wavefunction as a distribution of eigenstates Y (x, ¢).

Let the wavefunction at some time, which without loss of generality we
take as t =0, be denoted by Y(x,0). Let §(x,0) be limited (localized) to a
characteristic distance 8 as sketched in Fig. 17.7. Since the states Y ( x,0) form
a complete orthonormal set (see Section 2.6), we may expand y/( x,0) as

Y(x,0)= Jagup(x)e* (17.36)

aK=‘/(;L\p(x,0)u’,"<(x)e_"K‘dx (17.37)

where L is the “crystal” length. The distribution of ay is shown in Fig. 17.7b,
and is centered about a mean value K. The wavefunction y(x,¢) (¢t>1¢;)
must satisfy the time-dependent Schrédinger equation ‘jC\L =ih(0y/0t) as
well as the initial condition (17.36). This can be accomplished by taking

W(x, t>0)= Dagup(x)eK"Ext/h) (17.38)
K
Expanding Ej in the vicinity of K,
dE
E,=E, + d—é‘ KO(K— K,)

we rewrite (17.38) as

Y(x,t)=3 aK0+AKuK0+AK(x)
AK

dE
X exp {i[(Ko +AK)x— % ( = ﬁAK)t] }
= Ko~ Ex/M 3 ay L aki,ak
AK

1 dEy

chp[i(AKx—;;-RAKt)] (17.39)
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Figure 17.7 (a) The spatial probability distri-
bution of a localized electron at t =0. (b) The
corresponding “momentum” distribution func-
tion |ax|?.

where AK = K — K|,. An observer moving in such a way that the exponent
dE
(AK)x—+ XAkt (17.40)

of eq. (17.39) remains a constant will “see” the same value of [{(x, ¢)|. This
observer will have to travel at a velocity

dE
@ _1l&x_, (17.41)

dt h dK T ¢
The quantity g, is called the group velocity of the electron wave packet. It
represents the veloc1ty of the envelope |y(x,t)|? of Fig. 17.7a. For most
practical purposes, when one talks about the velocity of an electron in a crystal, one
talks about v,.
Anothcr important relation results from equating the work — by, dt,
done on an electron in a time d¢ by an externally applied electric field 8 to
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the change in electron energy dE (we use the definition ¢ =|¢|):

—eby,dt = dEy
_ dEg
=~ dK (17.42)
Using 4, = h~'dE, /dK leads to
dK b
Z - (17.43)
or, in general,
% (2K ) =External Force (17.44)

We thus find that as far as external forces are concerned the electron (i.e., the
electron wave packet) behaves as if it possesses a momentum AK. The
quantity 2K is called the crpstal momentum. The acceleration of the electron
wave packet in response to an external force is

d, 1d ( dEK)

dt ~ hdi\ dK
_ 1 d’Eg dK
W (17.45)
and using (17.43),
ay_ e L 4*E;
dt n? dK?
=Force /Effective Mass (17.46)
so that
m, = Effective Mass
1 d%E, ) .
=|—= 17.47
(h2 dK? ( )

The motion of an electron in a crystal in response to an external force is
governed by an effective mass that is inversely proportional to the curvature
of the dispersion (Ey vs. K) graph. The effective masses of carriers in some
commonly used electronic semiconductor crystals are given in Table 19.1.

17.4 THE CONTROL OF CONDUCTIVITY OF SEMICONDUCTORS
BY IMPURITIES

The occupation of electronic states in a semiconductor can be affected by the
introduction of foreign atoms—a process referred to as impurity “doping.”
The impurity atoms often enter the lattice by displacing an original atom. In
the process of bonding to the surrounding atoms the impurity atoms lose or
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gain electrons so as to end up with a number of valence electrons equal to
that of the majority atoms. If, as an example, pentavalent arsenic is used to
dope a crystal of Si (valence =4), then the extra, fifth electron is given up.
Since all the states in the valence band of silicon are filled (see Fig. 17.5), the
extra electron must be accommodated in the conduction band. This type of
doping is called N (for negative) type.

If the impurity atom possesses fewer valence electrons, then the host
atom—Zn in Si as an example—can complete its chemical bonding by
removing an electron from the valence band. The vacancy left behind is
called a “hole” and it takes part in the current transport, as discussed below.
This type of doping is called P (for positive) type.

The main difference between this extrinsic conductivity and the intrinsic
conductivity discussed earlier, which is due to excitation of electrons from the
valence band to the conduction band in a pure (undoped) crystal, is that in
the extrinsic case the number of holes and electrons is not equal. A more
quantitative discussion of this case is given in Chapter 19.

Current Flow in Semiconductors

The process of current flow in an N doped semiconductor is illustrated in Fig.
17.8. The occupancy of the electron states in K space before the application of
an electric field is shown in Fig. 17.8a. The physical location at ¢ =0 of the
single conduction band electron is shown in 17.8b. The application at ¢ =0 of
an electric field causes, according to (17.43), the K value of each electron to
increase at a rate

K __ &

dt ok
The resulting distribution in K space after a time At is shown in Fig. 17.8¢.
Since the valence band is full, it does not contribute to the current flow.
This is due to the fact that for each electron with a positive group velocity
(1/h)(dE /dK) there exists an electron (at — K) with an equal but oppositely
directed group velocity. The net current is thus due to the conduction band
electrons only. Since the single conduction electron of Fig. 17.8a moves in the
positive K direction, it has a positive group velocity and its physical transla-
tion is to the right, as shown in 17.84. The electron is thus accelerated in the
direction of the force, indicating a positive mass. This is consistent with Eq.

(17.47),

) _(Li"’é)_'
‘ h? dK?

which relates the effective electron mass to the curvature of the energy band
E(K) in K space.

The situation in a P-type semiconductor is depicted in Fig. 17.9. In our
example a single state on top of the valence band is shown as unoccupied at
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Figure 17.8 Current flow in an N-type semiconductor. At ¢t =0: (a) the electron
shown at the bottom ( K =0) of the conduction band; (4) the electron is shown at ¢ =0
as localized at x =0. At ¢ = At: (¢) the electron has moved in “K” space to the region
of positive slope; hence, since g, =(1/4) dEy /dK >0, it moved in physical space to
the right. This corresponds to a positive effective electron mass (m, >0).

t =0 (17.9a). The spatial and temporal bookkeeping of the electronic distri-
bution will be unaltered if we fill the vacancy with an electron, thereby filling
the valence band, provided we attach to the electron a positive charge that
follows it everywhere, in real space as well as in K space. Since the full valence
band does not contribute to the current flow, the latter can be accounted for
completely by the motion of the fictitious positive charge—the “hole.”

The motion of the hole in K space under the influence of an electronic
field is shown in Fig. 17.9¢. The added electron and its shadowing hole move
according to (17.43) in the + K direction. Since the slope dE /dK and hence
the electron group velocity y, is negative, the physical translation of the hole
(which must accompany the electron) is to the left, in the direction of the
electric field. Since the hole has positive charge, its acceleration is in the
direction of the force ¢& so that its mass is positive. The mass of a hole is thus
the negative of its associated electron, that is,

_ (1B
mh—~(§ = ) (17.48)
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Figure 17.9 A P-doped semiconductor. (a) One electron state in the valence band is
unoccupied at ¢ =0. The corresponding excess mobile positive charge (“hole”) is shown
at x=0 [see (b)]. (¢) Under the influence of the applied electric field the electron
distribution moves to the right in K space, where dE/dK oy, <0. Since 3, <0, the
corresponding physical motion is to the left. This can be represented by the motion of
a positive charge carrier (“hole”) with a positive effective mass

m.z(Lfé)-'
12 dK?

which both in K space and in real space is at the location of the electron vacancy.

The control of current flow in semiconductor crystals, which are doped
selectively with N- and P-type impurities, is the basic principle behind the
operation of transistors and of the technology of integrated electronics. This
topic is discussed in some detail in Chapter 19.

PROBLEMS

1. Derive the expressions for the matrix elements 4, B, C, D of (17.22).
2. Prove Eq. (17.33).

3. (Requires numerical analysis sophistication.) Solve numerically for the
eigenvalues and eigenfunctions of an electron in a periodic Kronig—Penney
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potential with s =t = 4A, ¥, =5 volts. Assume a value of E = 422 /2m,
then solve for the corresponding value of K from (17.30) and the
eigenvector (a,, b,) as given by (17.27). Repeat for values of K spanning
the interval 0 to m/A (A =s+t=8A).

4. If the electron momentum in a crystal is taken as #k; show that the
classical expression Power = Force X Velocity is still valid provided the
electron velocity is taken as the group velocity.
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