Ch. 3 ´¹Åéµ²ºcªº¹êÅç´ú©w



3.1 ²¤¶

(1) ´¹Åé¾É­P X-ray ´²®g¦]¦Ó´£¨Ñ¤F­ì¤l¦b©TÅ餺¦ì¸mªº¸ê°T¡A³o¸ê°T¬O´X¥@¬ö¥H¨Ó¤HÃþ³£¦b²q´úªº¡]­ì¤l½×´_¿³¤§«á¡^¡C

(2) M. von Laue 1912 ¦~ª½Ä±¦a·Q¨ì X-ray »P´¹Åé¥æ¤¬§@¥Î¥i¯à·|¦³¹³¥i¨£¥ú»P¥ú¬]¥æ¤¬§@¥Î¯ëªº®ÄªG¡C¦ý·í¥L»P¨ä¥L¦³¦W¬ì¾Ç®a¥æ´«·N¨£¡A¦h¼Æ»{¬°¤£¥i¯à¡A¥D­n­ì¦]¬O·Å«×³y¦¨ªº¼ö¹B°Ê¤Ó¤j·|¨Ï®¶´T¬Û·í©ó X-ray ªiªø¡C¡]¨£ 43 ­¶¤ÀªR¡^

(3) ¤j¬ì¾Ç®a¤£Ä@§ë¤J³]³Æ»P¤H¤O¡A¦Ó Friendrich µ¥¤H¦b 1912 ¦~¬O²Ä¤G¦¸´N¦¨¥\¤F¡]²Ä¤@¦¸¬O§â¹³¤ùªO©ñ¦b´¹Åé«e­±¡A¥H¬°¤Ï®g³Ì¤j¡^¡C¦Ó´X¤p®É«á Laue ´N±o¨ì¤F¥Î¥H¹w´ú³Ì¤j®p­Èªº¼Æ¾Ç²z½×¡C¡]¤@¶}©lÁÙ¤£¯à³B²z¦³ basis ªº´¹Åé¡A¦³¨Ç¹w´ú­n¬Ý¨ìªºÂI¯«¯µ¦a®ø¥¢¤£¨£¡^

(4) ¤@¶}©l¤°»ò³£¤£ª¾¹Dªº±¡ªp¤U¡A·Ó¨ìªºÂI¬O§_¦]¬°¬O´¹Åéµ²ºc´²®g³y¦¨³£¤£½T©w¡A©ó¬O¤@¨t¦C¹êÅç¥Î¥H±Æ°£¨ä¥L¥i¯à¡G¦p´¹Åé²¾¶}¡A¶®g¹Ï®×®ø¥¢¡A§ï¥Î¯»¥½¡A¿W¥ß«GÂI®ø¥¢¡A³Ì«á´¹ÅéÂà¤@ÂIÂI¡A¹Ï®×¸òµÛÂà¡C¦h¦~«á¤~¯à¥¿½T¦a¸ÑÄÀ¬°¦ó¼öÂZ°Ê¨S¦³¯}Ãa X-ray ¶³]¹Ï§Î¡A¦ý 1912 ¦~®L¤Ñ´N¤w¸g¼s³Q±µ¨ü¡C

(5) X-ray ¶®gªºµo²{¥]§t¤F³\¦h¡u¾®ºAª«²z¡v¦bµo®i¤W©Ò»Ý­nªº­n¯À¡C¾ã­Ó¤j¨Æ¥ó°_©l©ó²z½×Æ[©À¡A¦ý¤]¦³¦³¤Oªº²z½×¤Ï¹ï¡C¦b³o¹Lµ{¤¤¹êÅç»P²z½×³£¤£¬O¤@¶}©l´N§¹µ½¡A¦Ó¬O§Ö³tªºµo®i­×¥¿»P¤¬¬ÛÅçÃÒ¡A²×©ó¦¨¬°¬ì¾Ç®a¬ã¨sª«½èµ²ºcªº±j¦³¤O¤u¨ã¡C
 
 

3.2 ´¹Å骺´²®g²z½×

­«ÂI¡G

(1) ¥­­±ªi¡]§Y¥Nªí¥ú·½¦b«Ü»·³B¡^®g¨ì¼Ë¥»¤W¡A¨Ã¦bÂ÷¼Ë«~«Ü»·ªº¦a¤è¦¬¶°´²®g°T¸¹¡C

(2) ³Ì²³æªº¤@Ãþ´²®g¡A´²®g¥úªºÀW²v¡]ªiªø¡^¤£ÅÜ¡A¥s¼u©Ê´²®g¡C

(3) ¤£½×¤J®gªiªø¥Ñ¶q¤l¤O¾Ç´y­zªº¤¤¤l©Î¹q¤l¡A§í©Î¬O¥Ñ¥j¨å¤O¾Ç´y­z X-ray ¡A»P¦b­ìÂI¦ì¸mªº¡§³æ¤@Áû¡¨­ì¤l¥æ¤¬§@¥Î«áªº´²®gªi £Z ¦bÂ÷­ì¤l«Ü»·¨ã¦³¥H¤U¯S§O²³æªº§Î¦¡¡G¦¡¤l (3.1)

(4) ¤W¦¡¤¤¤§ f(r) ¥s§@ atomic form factor¡A¥¦»P cross-section £m ªºÃö«Y¬O (3.2) ¡]¤°»ò¬O cross-section ¡H ¥Î¥­ªO¡]»É¹ô¡^¤ñ¸û¦n·Q¹³¡A­Y¦³§@¥Î¤O³õ«h¥Î diff. cross-section ´y­z¡AÁ`¤§ £m ¶V¤j¡A¾×±¼¤Î°¾§é¶V¦h¤J®g½u¡C¡^

(5) ·í¦³¤@¤j°ï´²®g¤¤¤ß®É¡A´²®gªºªº¨¤¤À§G¥Ñ¨âºØ®ÄÀ³ºc¦¨¡G¨ä¤@¬O­Ó§O´²®g¤¤¤ß¦V¦U¤è¦Vµo¥X¨Óªº´T®g¡A¥H f ´y­z¡F¨ä¤G¬O«eªÌ¤¬¬Û¤§¶¡¤z¯A²{¶H¡A¦]¦¹Âña¤F´²®g¤¤¤ß¦bªÅ¶¡¤¤¦ì¸mªº¬Û¤z©Ê¡C

(6) ­º¥ý¡A´²®g¤¤¤ß¤£¦b­ìÂI¤W¡A¦Ó¦b R ÂI¤W¡A«h¤J®g¥ú¨ì¹F¸Ó³B·|»P­ìÂI¤§ case ®t¤@¬Û¦ì exp(iR¡Dk0)¡A¥t¥~¡A·í¥úªi¨ì¹FÆ[¹îÂI®É¡A¨ä¨«ªº¶ZÂ÷¨Æ¹ê¤W¥u¦³ | r - R |¡A«h­ì (3.1) ¦¡Åܦ¨ (3.3)¡Cª`·N¤è¬A¸¹¥~ªº exp(ik0¡DR) ¬O¦]¬°¤J®g¬Û¦ì¡A¤è¬A¸¹¤ºªº r - R ¤Î | r - R | ¬O¦]¬°¶ZÂ÷¦ì¸m¡C¦b r «Ü¤j®É (§Y«e­z¤§Â÷¼Ë«~«Ü»·ªºÆ[¹îÂI) ¦³ (3.4)¡A¤Þ¤J²Å¸¹ (3.5) §ï©w q «h±o (3.7)¡]hq ¨ã¦³°Ê¶qÂಾªº·N¸q¡^¡C­È±oª`·N  q = 2 k0 sin£c (3.8) ¡]·Q·Q¬Ý¦p¦óÃÒ©ú¡^ ¡e¯à¨Ï peak ¹F·¥¤j­Èªº £c¡A´N¬O¦³¦Wªº Bragg ¨¤¡f

(7) ²{¦b²×©ó¥i¥H¦Ò¼{¦³¤@¤j°ï­ì¤l¡A­Y¬Û¹ï¤À§Gµ}²¨¡A«h¤J®g¥ú¤l¸I¨ì¤@­Ó­ì¤l«á¤£¤Ó¥i¯àºò±µµÛ¤S¸I¨ì¥t¤@­Ó¡A¦p¦¹«hÁ`Å骺´²®gµ²ªG¬O­Ó§O­ì¤l´²®g¤¤¤ßª½±µ¬Û¥[¡]¬Û¥[³Q´²®gªºªi¡^¦Ó±o (3.9)¡C°£«D¬O¬Ý£c= 0 ªº¨¤«×¡A§_«hª½±µ¨Ó¦Û«e¤èªº¤J®g¥ú¬O¬Ý¤£¨ì¡A¤S¥¿«á¤è§¹¥þ¥¼³Q´²®gªº±j peak ­Y¼È¤£°Q½×¡A«h©Ò¦³¨ä¥L¨¤«×³£º¡¨¬¥H¤U¤½¦¡¡G(3.10)¡e³o¬O¨C³æ¦ì¥ßÅ騤ªº±j«×°£¥H¤J®g¥ú±j«×¤§«áªºµ²ªG¡f¡C¸Ó¦¡¥Î±j«×¨Óªí¥Üªº­ì¦]¬O¥Ñ©ó¥¦¤~¬O¹êÅ窽±µ¬Ý¨ìªº¶q¡C


3.2.1 Lattice Sums

¦b (3.10) ¤¤­Y©Ò¦³­ì¤l¬O¦P¤@ºØ¡A¨Ã¥B±Æ¦¨ Bravais ®æ¤l¡A«h´²®g±j«×¥i¼g¬° p.47 ªº(3.11) ¡C¥ú¬O¬Ý (3.11) ´N¥i¡§·Q¹³¡¨ ¨ì¦³¨Ç¯S®íªº q ­È¨Ï eiq¡ER = 1 (¹ï©Ò¦³ R)¡A«h³Ì«áµ²ªG¥[¦b¤@°_·|«D±`¤j¡A§_«h¡A(3.11) ¤º¥¿­t¸¹Åܤƨ䵲ªG±N¤j¤j¦a©è®ø¡]«á­±¦³¼Æ¾Ç¦¡ÅçÃÒ¡^¡C¦¹¤@·Q¹³¬O¥¿½Tªº¡A¦ý­n¯u¥¿¤F¸Ñ´N¥²¶·ª¾¹D¦p¦ó°µ (3.11) ³oºÙ¯Å¼Æ¨D©M¡A¥¦¥s lattice sum¡A¤£¦ý¦b X-ray ´²®g­«­n¡A¦b¾É¹q¹q¤l©ó´¹®æ¤ºªº¥æ¤¬§@¥Î¤]­«­n¡C¡]³oºØ¨D©M¨M©w¤F¥ô¦óªi»P¶g´Á©Ê®æ¤lªº¥æ¤¬§@¥Î¡^

¤@ºû©M¡G

¥Î¨ì¤Fµ¥¤ñ¯Å¼Æ»P­}²ö®Ú¤½¦¡¡A¥i³v¨B±À±o (3.12)¡B(3.13)¡B(3.14)

(3.14) ªº¹Ïªøªº¹³ Fig 3.3 ¡ö ­«­n

¤j®aª`·N (3.16) [(3.14) ¬Ý¦¨ £_ function ¥iªí¬° (3.16) ]¡A­n·|°µ¡]¨£ Appendix A¡^


 

3.2.2 Reciprocal Lattice (¤Ï®æ¤l¡A­Ë®æ¤l)
(1) ¦^¨Ó¬Ý (3.11)¡A§Ú­Ì¥i¥H»¡­nÅý¥¦¦³¦yªº peak ´N­n¿ï q ¬Oº¡¨¬ q¡DR = 2£kl¡A¨ä¤¤ R ¬O Bravais ®æ¤l¡Al ¬O»P R ¦³Ãöªº¾ã¼Æ¡C

¦b²ßºD¤W¡A¥ô¦ó q º¡¨¬¤W­z±ø¥ó´N¦b©TºAª«²zùØÀY³Q¥s°µ K¡A¬G³o¨Çº¡¨¬ eiK¡ER = 1 ªº K ¾ã­Ó´N³QºÙ§@¬O ¡¨reciprocal lattice¡¨¡C(ª`·N q ¬O¥ô·N¡AK ¬O¯S©w)

´¹Å骺´²®g±j«×¡A¨£ (3.16) ¡A¦A¥[¥H±À¼s¡A´N¥i¥H»P K ¦³©ÒÃöÁp (3.19)¡A¨Ã¹ï¨ºùئ³´²®gÂI¡A¨ºùبS¦³¡A«Ü¦³À°§U¡C

(2) ¥¬©Ô®æ­± (Bragg planes)
¯àº¡¨¬ (3.18) ªº K ¬O§_¯uªº¦³¡H¤S¬°¤°»ò K ¦Û¤v§Î¦¨ lattice¡H [ ½Ð¦Û¦æ¾\Ū¥»¬qªº°Q½× ]

(3) K ¬JµM§Î¦¨®æ¤l¡A¥¦¤]¦³¦Û¤vªº®æ¤l primitive vector¡C¥u­n§Ú­Ì°µ¥X b1¡Ab2¡Ab3¨Ó»P­ì lattice ªºprimitive vector¡Aa1¡Aa2¡Aa3 §Î¦¨¥¿¥æÂk¤@Ãö«Y¡Gai¡Dbj = 2£k£_ij¡A«h eiK¡ER = 1´N¦Û°Ê¥i¥Hº¡¨¬¡C¦p¦ó°µªº idea ¡A½u¯Á¬O¡A­Y b1ªº¤è¦V¬O a2 ¡Ñ a3 ©Ò©w¡A «h b1¡Da2 = 0¡A¥B b1¡Da3 = 0¡A¦Ó§Ú­Ì·Q­n b1¡Da1 = 2 p¡A ³Ì¦n¡]²³æ¡B°ß¤@¡^¥u¦³¥O b1= 2£k(a2 ¡Ñ a3) / [a1¡D(a2 ¡Ñ a3)]¡A¦pªkªw»s (3.24 a¡Ab¡Ac) ¨Ã¥O K=£Ui=1,3 mibi (3.24d) «h¤Ï®æ¤l©w¸q«Ø¥ß§¹¦¨¡C

(4) sc¡Bfcc ¤Î bcc ªº¤Ï®æ¤l
±q (3.24) ¦P¾Ç­Ì¥i¥H¦Û¤vÃÒ©ú sc ¤§¤Ï®æ¤l¤´¬O sc¡Afcc ¤Ï®æ¤l¬O bcc¡A¦Ó bcc ¤Ï®æ¤l«h¬O fcc¡]¦p¦ó¯u¥¿¥iÅçÃÒ?¡^¡]´£¥Ü¡G¬Ýprimitive vector ªº¯S©Ê¡^
 
 
 

3.2.3 Miller Indices ¡]indices <- index ªº½Æ¼Æ¡^
(1) ¥Î³~¡G´y­z reciprocal lattice vectors¡Alattice places¤Î lattice points¡A¤×¨ä±`¦b cubic ¹ïºÙ¤Î hexagonal ¹ïºÙ¨t²Î¤¤¨Ï¥Î¡C

(2) cubic ¹ïºÙ¡G

[ijk] «ü iX + jY + kZ ¤è¦V ¡]«ü¤è¦V¡^

(ijk) «ü««ª½©ó [ijk] ¤è¦V¤§­±

{ijk}«ü¾ã­Ó ªº««ª½©ó [ijk] ¤è¦V¤§­±

ijk «ü´¹®æ­± {ijk} ªº X-ray ¶®g®p

1 ¥Nªí -1 ¡]°O¸¹¤W¥Î 1 ¦Ó¤£¥Î -1¡^

<ijk> «ü©Ò¦³»P (ijk) ¯à³z¹LÂà°Ê¹ïºÙÃöÁp¨ì¤@°_ªº®æ¤l­±©Î®æ¤l¦V¶q


½d¨Ò¬Ý¤@¤U¡Gsimple cubic ¡F
¡Õ1 0 0¡Ö = { (1 0 0) , (0 1 0) , (0 0 1) , (1 0 0) , (0 1 0) , (0 0 1) } µ¥µ¥
 

(3) ¥t¤@ºØ©w¸q¤è¦¡¡Gµ²´¹¾Ç®aªº©w¸q (¤]«Ü¦n¥Î¡A¦P¾Ç­Ì¦Û¤v¬Ý¤@¤U) ¡C

(4) ¤»¨¤¨t²Î¡G¥Î 4 ­Ó¼Æ¦r (ijkl)¡A¨ä°t¸m¨£¹Ï 3.5¡Aª`·N l ªº«ü¦V¡A
¥B¤@¯ë³]¦¨ k = - (i+j)¡C
i , j , k ªº·N¸q¥Îµ²´¹¾Ç®aªº©w¸q³Ì©ö¤F¸Ñ¡C
 
 

3.2.4 ¦³°ò©³¤§®æ¤lªº´²®g

 
¨C­Ó´¹Å餺²É¤lªº¦ì¸m¦V¶q¤´¥i¼g¦¨ R¡AR = ul + vl ¡]ul¡GBravais lattice¡Fvl¡Gbasis element in Bravais lattice¡^¥i¾ã²z¦¨¨â³¡¤À­¼¿n¡A(3.28) ¡÷ (3.29) ¡÷ (3.30) ¦P¾Ç­Ì¤@©w­n¬ÝªºÀ´¡]³o¨â³¡¤ÀÁöµM¼Ë¤l§¹¥þ¤@¼Ë¡A¦ý¨D©M¤@­Ó­n¥[Á` 1023 ®æ¤lÂI¡A¥t¤@­Ó¬O 101 ³oºØ¼Æ¶q¯Å¡^¦³¦h¤@­Ó (3.31) ³o¼Ëªº factor ¥X¨Ó¡A¬G¥i¯à¦³ÃB¥~ªº peak ·|®ø¥¢¡A¥s extinction (µ´ºØ)¡A

½d¨Ò¡G¦P¾Ç¤@©w­n¬Ý¤@¤U¡C
 
 
 
 

3.3 ¹êÅç¤èªk
(1)¼Æ¾Ç±À¾ÉªºÁ`Âk¯Ç¡A¬O¡Gk0ªº¤J®g¥ú (¿ç®g²£¥Í´²®g¥ú (¿ç®g«ü¦V¤è¦V¡A¨ä¤¤ | k | = | k0 | (¤j¤p¬Û¦P)¡A¦ý®t¤@­Óªi¦V¶qq = k0¡V ¡A¦¹­Yµ¥©ó(­Ë´¹®æ¦V¶q)¡A´N¦³°T¸¹ÂI¡C

(2)
¾Þ§@¤èªk¥E·Q°_¨Ó«Ü²³æ¡G§â X-ray ¥´¨ì¼Ë«~¤W¡A¬Û¾÷©ñ«á­±¡A«ö§Öªù¡C¦ý¨Æ¹ê¤W¨S¨º»ò²³æ¡A¤J®g¥ú¬Ok0¡A­n°Ýk¤è¦V¤W¦³¨S¦³ÂI¡A¨ú¨M©ó¬O§_¦s¦bK = k0¡V k (¨ä¤¤| k | = | k0 | )¡A¦Ó¬O«Ü¯S©wªº¦V¶q¡AÀH«K§Ë¤@§Ë¦³¥i¯à¾ã­Ó«Ì¹õ¤W³s¤@­ÓÂI³£¨S¦³¡C

(3)­n¤F¸Ñ¡A­n¦³¨ãÅ骺´X¦óªÅ¶¡¹Ï¹³¡C³Ì¦n´N¬O±Ä¥ÎEwald Construction¡C©Ò¦³¥i¯àªºqº¡¨¬q = k0¡V k (¨ä¤¤ | k | = | k0 | ) ªÌ·|§Î¦¨¤@²y´ß¡C©Ò¦³K¥ÎÂI¨Óªí¥Ü¡A°ß¦³ÂI¸¨¦b²y´ß¤W®É¡A¤~·|¬Ý¨ì¥úÂI¡C

3.3.1 Laue¤èªk

(1) Laue¤èªk¬O·N¥~±o¨ì¡C·í¹q¤l¥[³t¤£¨¬±¡ªp¤UÅFÀ»¨ìÂë¹v®É¡A²£¥Íªº X-ray ¬O¤@­Ó³sÄò¥úÃС]¦P¨B¿ç®gªº X-ray ¤]¬O¡^¡A¦p¦¹¬Û·í©ó¹Ï 3.7 (B) ¬Ý¨ìªº¡A¥H¤@­Ó½d³òªºk0¡A(k0 min¡Ak0 max )¡A¬G¥i¥H¬Ý¨ì¤£¤Ö«GÂI¡C

(2) Laue¤èªkªº¯ÊÂI¬O¤£·Ç¡A¥B¥Ñ©óX-ray ±j«×¹ïÀW²v¬O¦³°ª§C¤À§G¡A«GÂIªº±j«×¨S¦³·N¸q¡C¥u¯à¦b·í´¹®æ¤j¤pª¾¹D®É¡A¥Î¨Ó©w¦ì´¹Åé­Ë¬O¤Q¤À¦n¥Î¡C

3.3.2 ±ÛÂà´¹Åéªk

¨£¹Ï 3.9 (A)¡A¥Î³æ¦â (³æ¤@ªiªø) X-ray ¥´´¹Åé¡A¦ý´¹Åé¤è¦ì§@¾A·íªº±ÛÂà¡]¨ä²Ó¸`¬O¸û²`¤Jªº¹êÅç§Þ¥©¡^¡A«h¥i¥H¦b¹õ¤W¬Ý¨ìÂI¡C¹ê»Ú§@ªk¤£¹³¹Ï 3.9 (A)¡ö³oºØ§@ªk·|¾É­PÂà¶b¤èªkªº Lattice point ¬Ý¤£¥X¨Ó¡C¨£¹Ï 3.10 (A)¡A(B) ³o¤èªk¯à¬Ý¨ì lattice point ¥¿½Tªº¶¡¹j¡A¥s¡§¶i°Ê·Ó¬Û¾÷ªk¡¨¡C

3.3.3 ¯»¥½ªk

(1) ¨S¦³³æ´¹®É¡A¥i¥Î¯»¥½ªk¡C§÷®Æ¥H¯»¥½©Î¥H¦h´¹ £gm (10-6m) ¤j¤p¤§´¹²É¥X²{®É¡A²Å¦X¦¹¤@ª¬ªp¡C

(2) ¦b¯»¥½¤¤¡A¦U¤è¦V¤è¦ìªº´¹²É³£¦³¡A¥Ñ¦¹¥X¨Ó±ø¯¾¬OÀôª¬¡C

(3) º¡¨¬¥¬©Ô®æ´²®gªº D­È¡A¨£ (3.40)¡A(3.41)¡C

(4) ¨£¹Ï 3.12 (­«­n)