(1) Somerfeld ªº¦Û¥Ñ¹q¤l®ðÅé²z½×ÁöµM´£¨Ñ¤F¤@«Üµ´¨Îªº°_©lÂI¨Ó±´°Qª÷ÄÝ¡A¥¦¤]¾ÉP¤F·sªº§xÃø¡C³o°ÝÃD¦b©ó¸ÑÄÀ¬°¦ó¹q¤l¥i¥H¦bª÷ÄݪºÂ÷¤l¤§¶¡³D¦æ¦Ó°jÁפF¼Æ¶q¯Å¬Oì¤l¶¡¶ZÂ÷ªº¡§¥§¡¦Û¥Ñ¸ô®|¡¨¡A§Y¤£·|¼²À»¨ìì¤l¦Ó¨Ï¾É¶Ç©Ê½è¤U°¡C7.2 ¥²¾¹ïºÙ©Ê - Bloch's ©w²z(2) ¤ñ°_¹êÅçÆ[¹î¨ìªº¹q¤l¡A·Q¥Hì¤l¶¡¶ZÂ÷§@¬°¥§¡¦Û¥Ñ¸ô®|¸ÑÄÀ¥¦´NÅã±o³o¶ZÂ÷¬O¤Ó¤p¤F¡C¬Æ¦Ü¡A¹êÅç©Ò¬Ý¨ìªº¹qªý·|n¨D¥§¡¦Û¥Ñ¸ô®|ÀHµÛ·Å«×ªº°§C¦ÓÅܤj¡A³o«ç»ò¥i¯à¡H
(3) Bloch ¦b 1928 ¦~¦b¥Lªº½×¤å¤¤¬°³oÓ°ÝÃDµ¹¤Fµª®×¡C¥L¬O¤ÀªR³æ¤@Ó¹q¤l¦b§¹¬ü©P´Á©Ê¦ì¶Õ¤¤ªº²¾°Ê¡C¥L¦^¾Ð»¡¡G¡u§Ú«Ü°ª¿³¦aµo²{³oºØªi¥u©M¦Û¥Ñ¹q¤lªº¥±ªi®t¤@Ó¶g´Á©Êªº modulation¡]¼Ò²ÕÅܤơ^¡C³oµ²ªG¬O¦p¦¹¦a²³æ©Ò¥H§Ú·Q¥¦¤£ºâ¤°»ò¤jµo²{¡A¦ý§Ú§â¥¦®³µ¹®ü´Ë³ù¬Ý¡A¥L°¨¤W»¡¡G°Ú¡I´N¬O³oÓ¡I¡v
(4) ì¨Óªº°ÝÃD°¨¤W±q¡©¬°¤°»ò¥§¡¦Û¥Ñ¸ô®|¦p¦¹ªø¡ª³oÓ¤ñ¸ûÃøªº°ÝÃDÅܬ°¡©¬°¤°»ò¥§¡¦Û¥Ñ¸ô®|¦p¦¹µu¡H¡ªªº³o¼Ëªº¸û²³æªº°ÝÃD¡C
(5) ¹q¤lªº´²®g¨Ã«D¥Ñ´¹®æ³y¦¨¡A¦Ó¬O´¹®æ¤¤ªº¯Ê³´¡A³o¨Ç¯Ê³´¥i¥Ñ¼öÂZ°Ê©Î¬OÂø½è©Ò³y¦¨¡C¦b§C·Å®É¡A¹q¤l¤¤¥§¡¦Û¥Ñ¸ô®|(µ{)·|¼W¥[¨ìÂø½è¿@«×©Ò³]©wªº¤W¬°¤î¡C³oӦ欰¸g¹êÅçÆ[¹î¨ì¦Ó¤j¤j¦a¤ä«ù¤F Bloch ªº²z½×¬[ºc¡C
Bloch ªº¹q¤l²z½×¬O¤@ºØ non-intreacting electron ¡]¤£¥æ¤¬§@¥Î¹q¤l¡^ªº²z½×¡C³o¨Ç¹q¤l¦b¶g´Á©Êªº¦ì¶Õ U(r) ¤¤²¾°Ê¡A¦¹¦ì¶Õº¡¨¬ U(r+R) = U(r)¡C¿ù»~ªº¥Ü½d³æ¹q¤l Hamiltonian ¦b³o¼Ëªº¦ì¶Õ¤U ¼g¬° ^H = (^P / 2m) + U(^R)¡Aª`·N¦³ "^" ¸¹ªº¬Oºâ²Å¡CÁöµM³oÓ Hamiltonian ©Ò´yzªº¹q¤l¨ä¶¡¨S¦³¥æ¤¬§@¥Î¡A¥Ñ©ó U(^R) ªº½ÆÂø©Ê³oÓ°ÝÃD¤´µM¬O«ÜÃøªº¡C§Ú̬O¾a¹ïºÙ©Ê¤~¯à¶i®i¤U¥h¡C
Bloch ©w²z¬O¨Ó¦Û¥²¾¹ïºÙ©Ê (7.1)¡C¦³¤H¥i¯à·|²q·Q (7.2) ¦¡ªº¸ÑÀ³¸Ó¬O¨ã¦³ £Z(r+R) =£Z(r) ªº¯S©Ê¡A³o¬O¤£¹ïªº¡A¤Ó¹L«]¤F¡C¤@¯ë¤H®e©ö¥Çªº¿ù»~¡A¬O¥H¬°Y¤èµ{¦¡º¡¨¬¬YºØ¹ïºÙ©Ê¡A¨ä¸Ñ´Nnº¡¨¬¨ººØ¹ïºÙ©Ê¡C
¹ï©ó U = 0¡]©Î U = ±`¼Æ¡^ªº±¡§Î¡A³oÓ¦ì¶Õ¦b©Ò¦³ªº¶ZÂ÷ªº¥²¾¤U¡A³£¬O¤£Åܪº¡C¦pªG¨ä¸Ñ £Zk(r) ¥²¶·¤]¨ã¦³¬Û¦Pªº¹ïºÙ©Ê¡A¨º»ò¥¦´N¥u¯à¬O¤@Ó±`¼Æ¡C¨Æ¹ê¤W§Ú̳£ª¾¹D¤£¬O³o¼Ëªº¡A¥¦ªº¸Ñ¬O¦UºØ¥±ªi¡A¨ã¦³ £Zk(r) ¥¿¤ñ©ó eik.r ªº§Î¦¡¡C¥¿½Tªº¤ÀªR
º¥ý¤¶²Ð¥²¾ªººâ²Å¡]operator¡^¡ATR = e-iP.R/h ¡A³o¬O¯à§â¤@Óªi¨ç¼Æ¥²¾¦V¶q R ªº operator¡C¦p¦ó¤F¸Ñ³o¥ó¨Æ¡A°£¤F°Ñ¨£½Ò¥»¤å¤¤µù°Oªº°Ñ¦Ò¸ê®Æ¥~¡A¥H¤U´£¨Ñ¥t¤@ºØ¬Ýªk¡Gµ¥®Ä Hamiltonianº¥ý§â«ü¼Æ¤W±a¦³ operator ¬Ý§@¬O«Ü¦h
TR = e-iP.DR/h ¡Ee-iP.DR/h¡E........¡Ee-iP.DR/h = TDRN¡A¡]¨ä¤¤ DR = R/N¡^
²{¦bn»¡©ú¡A¨C¤@Ó e-iP.DR/h ¬Û·í©ó¹ï¨ç¼Æ¶i¦æ«D±`¤pªº¥²¾°Ê§@¥Ñ©ó¡GP = (h/i)(d/dx), ¬G e-iP.DR/h = e-DR(d/dx) ~ 1 - DR(d/dx) + ...¦Ó¦³
TDRf(x)
= [1 - DR(d/dx)] f(x)
= f(x) - DR(d/dx)f(x)
= f(x) - f'(x)DR
~ f(x - DR)³o¬Û·í©ó¦bÁ¿ TDR ³oÓºâ²Å§â¨ç¼Æ f(x) ÂàÅܦ¨ f(x - DR)¡A¤]´N¬O¾ãÓ¨ç¼Æ¬O¹³¥k²¾°Ê¤F DR¡C
¬JµM TDR ¬O¤p¥²¾¡A TR ´N¥Nªí±N¨ç¼Æ f(r) §@¤F R ªº¥²¾¤F¡C¤Wzªº±À¾É¤¤¡A¨Ï¥Î¤@ºû¼g¥X¡A¤Tºûªº±À¼s¨S¦³°ÝÃD¡CDR ¦pªG¥O¦¨µL¤p¦ì²¾ dR¡A´N¬Oºë½T¦Ó¨S¦³ªñ¦ü¤F¡C
²{¦b§ÚÌ©Ó»{¡ATR ¬O¥²¾ºâ²Å¡A¨Ó¬Ý¤@¤U¥¦ªº¯S©Ê¡A§Y [TR,H] = 0¡]ÃÒ©ú¨£²ßÃD 2 ¡^¡C
¸ÕµÛ¦bì H |Y> = £`|Y> ¦¡ªº¨âÃä§@¥Î TR¡A«h¥Ñ©ó [TR,H] = 0 ªº½t¬G T H |Y> = T£`|Y> ¡÷ H T |Y> = £`T |Y>¡A°¨¤W¥i¥H¨£¨ì³Q T §@¥Î¨ìªº¥»¼xºA¤]¤´µM¬O H ªº¥»¼xºA¡A¦]¦¹ T |£Z> ¥²µM»Pì¨Ó¨ººA¥»¼xºA¦s¦b¥u®t¤@±`¼ÆªºÃö«Y¡A§Y TR |Y> = CR|Y>¡C¡]«ç»ò¦³³o¼Ë¶¡³æªº¨Æ¡Hª`·N H ªºµ²ºc¤º¤w§t¦³¹ïºÙªº U(r+R) = U(r)¡^¡A ¤~¦³ [TR,H] = 0 ªº¡^Yªi¨ç¼Æ§Ų́M©w¦b¹êªÅ¶¡¤¤¼g¤U¨Ó¡]¤]´N¬O¥ªÃ伤W¤@Ó < r | ¥s°µ bra stare ªºªF¦è¡^¡A³oÓÃö«Y´NÅܦ¨ Y(r+R) = CRY(r)¡C¡]³oÓ¦¡¤l¥Õ¸Üªº»¡ªk´N¬O¡Aº¡¨¬ U(r+R) = U(r) ¤§ Y ªº¸Ñ Y(r)¡AY²¾°Ê¤F R¡A¥u·|®t¤@Ó±`¼Æ¡^
±µ¤U¨Ó¬Ý¬Ý³oÓ±`¼Æ CR ·|¬O¤°»ò, ¥H < k | ªº bra state §@¥Î©ó (7.6) ¦¡ªº¥ªÃä. ¦b³oùØ¡A< k | ¬O | k > ªº¦@³m¡A¦Ó | k > ¬O¯S©wªº²Å¸¹¡A¤£¬OÀH«K¼g¼gªº k¡A| k > ¥Nªí°Ê¶qºâ²Åªº¥»¼xºA¡CYn¦b¹êªÅ¶¡¼g¤U¨Ó¡A§Y < r | k >¡A¥¦´N¬O±a k ¦V¶qªº¥±ªi eik¡Dr¡C¥Ñ©ó | k > ¬O°Ê¶qªÅ¶¡ªº¥»¼xºA¡A°Ê¶qºâ²Å¬O hermitian ºâ²Å¡A¥¦¥i¥H¦V¥ª§@¥Îªº¡]§Q¥Î a+ij = aij ªº hermitian ¯S©Ê¥iÃÒ¡^¡A¥Ñ¦¹ < k | P = < k | (hk)* = (hk)*< k |¡A«h < k | TR = < k | e - i P¡DR/h = < k | [e(-i k¡DR)*] = < k | ei k¡DR = eik¡DR < k |¡C
¦p¦¹¡A§â < k | §@¥Î¦b (7.6) ¦¡¥ªÃ䪺µ²ªG¡A´N¾ÉP eik¡DR < k |Y> = CR< k |Y>¡C³oÓÃö«Y¦¡§i¶D§ÚÌ¡A¹ï©ó < k |Y> ¡Ú 0 ªº¨º¨Ç |Y>¡]¥Ñ©ó¨ã¯S©w©Ê¡A²{¦bÀ³ºÙ¤§¬° |Yk>¡^¡A¨ä Yk(r+R) = CRYk(r) = eik¡DRYk(r)¡e¬°¤°»ò k ¥i¥H«ü¥Oµ¹ Y ªº§ó¶i¤@¨Bªº¤ÀªR¡G°²³]²{¦b¦³¤@Ó Y(r)¡A¨ä < k1 |Y> ¡Ú 0¡A< k2 |Y> ¡Ú 0¡A¨ä¤¤ k1 ¡Ú k2, «h Y(r+R) = eik1¡DRY(r) ¥B Y(r+R) = eik2¡DRY(r)¡A«h¾ÉP eik1¡DRY(r) = eik2¡DR£Z(r), ¦ý k1 ¡Ú k2¡A¬G¥Ù¬Þ¡C³oªí¥Ü |Y> ¥u¯à»P¤@Ó k1 Ȧ³ < k1 |Y> ¡Ú 0¡A¦]¦¹¥H¸Ó k1 È¨Ó¼Ð¥Ü |Y>¡A¦Ó¼g¦¨ |Yk1>¡f
°£¤F¥Î k ¼Ð¥Ü |Y> ¤§¥~¡A¥Ñ©ó |Y> ¬O¨Ó¦Û¥»¼xÈ°ÝÃD±o¥»¼xºA¡A¥»¨¹ïÀ³¦U¦Ûªº¥»¼xÈ En¡A¦]¦¹ |Y> ªº index ¦³ n ¤Î k¡A¼g¦¨ |Ynk>.
¤èµ{¦¡ (7.10b) ´N¬O Bloch's theorem¡A±`¥Î¼g¦¨¨âºØªí¥Üªk¡A¨ä¤@¬°Ynk(r+R) = eik.RYnk(r)¡C
¥t¥~¤@ºØ±`¨£ªº¼gªk¬O³¯z¡A©Ò¦³º¡¨¬ U(r+R) = U(r) ¦ì¶Õªº Hamiltonian ·|¨ã¦³ £Znk(r) = e-ik.r unk ªº©T©w§Î¦¡¡A¨ä¤¤ unk(r+R) = unk(r)¡A¬O¤@Ó»P´¹M¶g´Á©Ê§¹¥þ¬Û¦Pªº¨ç¼Æ¡C¹q¤l¦b´¹®æ¤¤ªº¦æ¬°¦]¦¹¹³¬O¤@Ó®¶´T»P´¹®æ¶g´Á§e¤@¼Ò²ÕÃö«Yªº¥±ªi¡A¦p¹Ï 7.1 ©Ò¥Ü¡C
¯à±a£`nk ¦b¥Î©ó¸ÑÄÀ©TÅ骺¦æ¬°¬O«D±`«nªº¡C¥¦¤º§t¤F¸Ó©TÅ餧ª÷ÄÝ¡B¥b¾ÉÅé¡Bµ´½tÅ骺¯S©Ê¡C¥¦¡]¯à±a¡^ªº±×²vµ¹¥X¤F¹q¤lªº³t²v¡A¤]¦]¦¹¹w´ú¤F¹q¤lªº¶Ç¿é©Ê½è¡C¨ä§Îª¬ªº²Ó¸`¥i¥H¥Î¨Ópºâ³Ì§C¯àºAªº´¹Åéµ²ºc¡A¬Æ¦Ü¬OºÏ©Ê¡C¥H¤Uªº´XÓ³¹¸`³£±N¯A¤Î¨ì©TÅ骺¯à±a¦p¦ó³Qpºâ¥H¤Î¸ÑÄÀ¨äµ²ªG¡C
°ò©ó Bloch's ©w²zªºµ²ªG¡Aì¨Óªº Hamiltonian (7.2) ¥i¥H³QÂà´«¦¨¥u¶·¦b´¹M½d³ò¤§¤º¨D¸Ñ§Y¥iªºµ¥®Ä Hamiltonian¡C§â£Z(r)= e-ik.ruk(r) ®M¤Jì Hamiltonian §ä¥X uk(r) ©Ò¿í¦uªº Hamiltonian¡A´N¥i¥H±o¨ì (7.14) ¦¡¡Cª`·N uk(r) ¬O¶g´Á©Êªº¡A¦]¦¹¨D¸Ñ (7.14) ¥u»Ýn¦b¤@Ó´¹M¤¤¶i¦æ§Y¥i§¹¦¨¡A¦ýn²Å¦X (7.15a) ¤Î (7.15b) ³o¼ËªºÃä¬É±ø¥ó¡]¹ïÀ³©óªi¨ç¼Æ»P¨ä¤@¶¥¾É¼Æªº³sÄò©Ê¡^¡C·í»Ýnªi¨ç¼Æ®É¡A§â e-ik.r ¼¦^¥h¦Ó¦³ (7.16a)¡B(7.16b) ±ø¥ó¦¡¡A¦]¦¹¤]¥u»Ýn¦b¤@Ó´¹Mªº¶g´Á¤º¨D¸Ñ´N¥i¥H¤F¡Cºâ¤@ºâ k ¦³´XÓ¦pªG¤@Ӽ˫~¦³¤j¬ù 1023 ¼Æ¶q¯Åªºì¤l¡]©Î´¹M¡^¡A¨º»ò¸g¹L²{¦bªºÂ²¤Æ¡A¦ü¥G´N¥u»Ýn³B²z¤@Ó cell ªº°ÝÃD¤F¡C³o·íµM¬O«Ü¤jªºÂ²¤Æ¡A¥u¬O¥Ñ©ó·s«ü¼Ð k ªº¤Þ¤J¡A©Ò»Ý¨D¸ÑªººA¼Æ¤SÅܦh¤F¡A¦ý¥¼¨Ó§ÚÌ·|¬Ý¨ì¡A¬°¤F¨D¥X·Ç½Tªºª«²z¶q¡A¨Ã¤£¬O¨CÓ k ³£n¶i¦æ¨D¸Ñªº¡A¦Ó¬O±Ä¼Ë³¡¤À§Y¥i¡C
(1) ¥Ñ Bloch ©w²z©Ò²£¥Íªº k ¥i¥H¦Û¥Ñªº¦b¼s¤j½d³ò¤º¨úÈ¡A¦ý¤]¥²¶·¿í¦u Bloch ªi¦b¦³¤j¤pªº´¹Åé¼Ë¥»¤º©Ò¯à¦s¦b¤§Èªº¬ÛÃö¨î¡C¡]´«¥y¸Ü»¡¡A´N¦p¦P¤W¤@³¹¦Û¥Ñ¹q¤l®ðÅ骺¨Ò¤l¨º¼Ë¡Ak ¨Ã¤£¬OÀH«K¤°»òȳ£º¡¨¬ªº¡Cª`·N¦^·Q¹Ï 7.1 ¨ä k ¬O±±¨î¤F´XÓ´¹M¶g´Á«áªi¨ç¼Æn®¶Àú¦^¨Ó¡C¡^¥t¥[¤W¹ï k ªº¨î¡A³Ì®e©öªº¤èªk¬O±Ä¥Î»P¤W¤@³¹¦b¦Û¦³¹q¤l®ðÅ骺°µªk¤@¼Ëªº ¡¨¶g´Á©ÊÃä¬É±ø¥ó¡¨¡C¹ï¥ß¤è´¹Åé¦Ó¨¥¨äÅé¿n¬O V=L3¡A¥[¤W¤F¶g´Á©ÊÃä¬É±ø¥ó«á k ¥²¶·¥H (6.7) ¦¡¤è¦¡§e²{¡A»P¦Û¥Ñ¹q¤l®ðÅé¤@¼Ë¡C¬G©Ò¤¹³\ k ¤§±K«×¤]»P (6.13) ªÌ¬Û¦P¡C¦Ü©ó¤£¬O¥ß¤è´¹®æªÌ¡A´Nn¦Ò¼{¨ä¤TÓ primitive ¦V¶q a1¡Ba2¡Ba3¡C¶g´Á©ÊÃä¬É±ø¥ó¥²¶·°t¦X¦¹¤@ a1¡Ba2¡Ba3 ¦V¶q©Ò´yzªº´¹Åé¼Ë¥»¡]¦]¦¹¬O¥¦Ì¾ã¼Æ¿ªº¦V¶q©M¡A¦p (A.17) ¨º¼Ë¡^¡C¦b³o¼Ëªºª¬ªp¤U¡Ak ¦V¶q©Ò¤¹³\ªº¯àº¡¨¬¶g´Á©ÊÃä¬É±ø¥óªºÈ¨ã¦³ (7.17) ªº§Î¦¡¡Gk=£U(l=1,3) (ml/Ml)bl¡A¦¹¬O ml ¤¶©ó 0 »PÁ`¼Ë¥»ªø«×¤§¿¼Æ Ml ¤§¶¡ªº¾ã¼Æ¡A¨ä¤¤ b1¡Bb2¡Bb3 ¬O˪Ŷ¡®æ¤lªº primitive ¦V¶q¡A¥¦Ìº¡¨¬ bl¡Dal' =2 pdll'¡A¤Î (7.18) ¦¡¡C±q³oÓµ²ªG¤j®a¥i¥Hª`·N¨ì k ªº½d³ò¬O³Q¨î¦í¦b b ªº½d³ò¤§¤ºªº¡C¥¬¨½²W°Ï(2) primitive vector b1¡Bb2¡Bb3 ´yz¤F˪Ŷ¡¤¤´¹®æªºÃä¬É¡A¦Ó k ªºÈ³£¬O¦b³oÓ½d³ò¤§¤¤¡CÁö»¡¥i¥H¸g¥Ñ ml ¨úÓ¤j©ó Ml ªºÈ¡Ak ´N¥i©w¦b¦¹¤ÏªÅ¶¡ primitive cell ¤§¥~¡A¦ý¬O³o¼Ëªº k »P¬YÓ©w¦b¨ä½d³ò¤¤ªº k ´N·|¥u®t¤@Ó reciprocal lattice vector K¡C¥Ñ (7.10b) ¥iª¾¥ô¦ó¨âÓ®t¤F¤@Ó K Ȫº k¡A¨ä¥²¾ºâ²Åªº¥»¼xȳ£¦P¼Ë¬O eik.R¡A³o¬O¦]¬° eik.R = 1¡C¦]¦¹¡Ak 쥻´N¬O¨Ó¦Û¥H¥²¾ºâ²Å§@¥Î©ó¼Ð¥Üªi¨ç¼Æ¦Ó¥[¥H©w¥X¡A¦b¨âÓªi¨ç¼Æ¼Ð¥Üµ²ªG¤@¼Ëªºª¬ªp¤U¡A§ÚÌ¥i¥HÅé·|®t¤@Ó K Ȥ§ªi¨ç¼Æ¨äª«²z¤WÀ³¸Ó¬O¬Û¦Pªº¡C¦]¦¹ k ªº½d³ò¥þ³¡¦b b1¡Bb2¡Bb3 ªº³æ¦ì˪Ŷ¡´¹M¤º§Y¥i¡C
(3) ®Ú¾Ú (7.17)¡Ak ªºÁ`ӼƦb k ªÅ¶¡ primitive cell «ê¦n¬O M1M2M3 Ó¡A¥¦¤]è¦n¬O¹êªÅ¶¡¤¤¼Ë«~´¹Åé§t¦³¦h¤ÖÓ´¹MªºÁ`¼Æ¡C¦]¦¹§Ú̦³¤@Ó²³æ¥B´¶³q©Êªºµ²ªG¡A³¯zµÛ¿W¥ßªº Bloch ¦V¶q k ªºÓ¼Æµ¥©óì´¹Åé Bravais lattice ªº®æ¤lÂI (site) ¼Æ¥Ø¡C
k ªÅ¶¡¸Ìªº primitive cell ¥i¥Ñ¥ô·Nªº primitive ¦V¶q b1¡Bb2¡Bb3 ®i¶}¡A³o¨Ã¤£¤è«K¡A¦]¬°µLªkµ¹¥X¤@Ó©T©wªº´yz¡A¦Ó¥B¤]¤£«OÃҨ㦳§¹¾ãªº´¹Åé¹ïºÙ©Ê¡]¨£²Ä¤@³¹¡^¡CY¦b k ªÅ¶¡ªºìÂI©w¤@Ó Wigner-Seitz cell¡A³oÓ primitive cell ´N¤£³£·|¦³¤Wzªº¨âºØ¯ÊÂI¡A¥¦¥s°µ Brillouin Zone (BZ) ©Î¥s°µ first Brillouin Zone¡Cª`·N·í¶i¦æ¹³¬O (7.23) ¨º¼Ëªº¿n¤À®É¨ä k È©Î q ȬO¹ï©Ò¦³ BZ ¤§¤ºªººôª¬¦V¶qÂI¨Ó¶i¦æ¡A¿í¦u (7.17) ¤§½d³ò¨î¡C¦ý«Ü¤£¤@¼Ëªº¬O¡A¹ï K ¨D©Mªº±¡ªp¡A¥¦¬O§@¥Î¦b¥Ñ (3.24d) ¦¡©Ò©w¸qªº¡A¤£¤@¼Ëªº¦V¶q¶°¤§¤W¡CºA±K«×
»P¦Û¥Ñ¹q¤l®ðÅ骺±¡ªp¤@¼Ë¡A§â¹ï k ¨D©MÂର¿n¤À¦³®ÉÔ·|¥²¸û¤è«K¡C§Ṳ́]¤@¼Ë»Ýnª¾¹D¤@Ó k Ȧb k ªÅ¶¡¤¤©Ò¦ûªºÅé¿n¡A³o¸ò (6.10) ªº¦ôºâ¬O¦P¼Ëªº¹D²z¡C±q (7.17) ¦¡©Ò©wªº k ªº¶¡¹jª¾¹D¡A¨CÓ k ÂI¦û¦³Åé¿n b1¡D(b2¡Ñb3)/ M1M2M3¡A¤Î (7.19) ¦¡©Ò¥ÜªÌ¡C§â¦U bl ¬O¦p¦ó¥Ñ´¹M ai ¦V¶q±o¨Ó¤§©w¸q¥N¤J¾ã²z (7.20) ¡÷ (7.21) ¡÷ (7.22) ¡A·|µo²{¥¦¥¿¦n¤]¬O (2p)3/V¡A©M¤W¤@³¹ªºµ²ªG¤@¼Ë¡C¯à±a»P¸s³t«×¦]¦¹¡A(7.23) ªº¿n¤À / ¨D©MÅÜ´«Ãö«Y»P¯à¶qºA±K«×ªº©w¸q (7.24) ¤]¬O¤@¼Ë¡Cȱo¤ñ¸û (7.24) »P (6.19) ¡A³o¸Ì¯à¶q¥»¼xÈ £`nk ¬O±a¦³ band index n ¤Î wave vector index k¡C
7.2.1 Van Hove Singularity±q¯à¶q¨ç¼Æ £`nk (¯à±a)©Ò¯àÀò±oªº³Ì«nªºª«²z¶q¤§¤@´N¬O¹q¤lªº³t«× vnk¡A¥¦¥Nªí²Ä n Ó¯à±a¤W¡A¨äªi¦V¶q¬O k ªº¹q¤l³t«×¡A¨Dªk¬O (7.25) ¦¡¡Gvnk=(1/h)¡¾k£`nk (¡¾k¥Nªí¹ï k ªº¤À¶qÓ§O¨D¾É¼Æ¡Gex¡¾kx + ey¡¾ky + ez¡¾kz)¦b¦¹§Ú̼Ȥ£²`¤JÅçÃÒ¤W¦¡¡A¦b²Ä 16 ³¹¤¤·|¦³¸Ô²Óªº±À¾É¡Cȱo¥ý¤@´£ªº¬O¡A(7.25) ¦¡¨ä¹ê¥u¬O¦b³¯z³æì¤l¼Ò«¬ªº¸Ñ´¶¹M³£±a¦³¸s³t«× v =pd£s/pdk¡]pd ¥Nªí°¾·L¤À²Å¸¹¡^¡C±qªi°Ê¤O¾Çªº¨¤«×¨Ó¬Ý¡A²É¤l¨Æ¹ê¤W¬Oªi¥]¡A(7.26) ´yz¤F¤@Óªi¦V¶q¤j¬ù¬° k ªºªi¥]¡A¸gªñ¦ü¾ã²z (7.07)¡÷(7.28)¡A¥i¥H¬Ý¥X¾ãÅé¨ç¼Æ¡]ªi¦C¡^¡}wave train¡~ªºÅܤơ]±q r »P®É¶¡ÅܼƤ@°_¥X²{¦b©w¸q°ìªºÃö«Y r - vt¡^¥iª¾¡A³oÓ¦æ¶iªiªº¸s³t«×¬O vnk =¡}1/h¡~¡¾k£`nk¡C
µù¡G(7.26) ¬Oªi¥]ªº¤@¯ë§Î¦¡¡A¥¦»Ýn¦³ r ¨Ó´yz¾ãÓªi¥]ªÅ¶¡¤¤¤À§Gªº§Îª¬¡A¦³ k ¨Ó«ü©w¥¦¬O¥H¨º¤@Óªi¦V¶q¨Ó¦æ¶i¡A¦³ t ¨Ó´yz¥¦¹ï®É¶¡ªºÅܤơA¦]¦¹ªi¥]ªº¦ÛÅܼƬO W(r,k,t) ¬O«Ü¥¿±`ªº¡C(7.26) ¦¡µ¥¸¹¥kÃ䪺¿n¤À¤¤¡Aw(k'- k) ¬O¦U¥»¼xºAªºÅv«È¡A¶V±µªñ w(0) Åv«¶V¤j¡A³Ñ¤Uªº«ê¬O¥»¼xºA§¹¾ãªºªi¨ç¼Æ¡A¥¦¥]§t¤F«D®ÉÅÜÁ§¤B®æ¤èµ{©Ò¸Ñ¥Xªº £Zk(r) ¥H¤Î®É¶¡³¡¤Àªº ei£st¡A¦Ü©ó £Zk(r) ¥i¥H¦A¤À¥X eik¡Er ¤Î³Ñ¤Uªº¨ç¼Æ¡A¦b¥»³¹¤¤ªºª¬ªpªº¸ÜÀ³§@uk(r)¡C±q (7.26) ´£¥XÄÝ©ó ei(k¡Er - £`kt/
h) ¨Ã®i¶}¨ì (k'-k") ªº²Ä¤@¶µ¡A¥i²¤Æ¦¨ (7.27)¡A±q´I§Q¸Âà´«¤½¦¡ªº¨¤«×¦Ó¨¥¥¦´N¬O¤@Ó (7.28) ¦¡ªº¼Ë¤l¡A¥¦¬°¨ýµÛ¾ãÓªi¥]ÀH®É¶¡ªºÅܤƧ@ ¡¾k£`nk ªº¥²¾¡A¤]´N¬Oªi¥]ªº¸s³t«×¡C
Singularity ¦³®É½§@©_²§¡A±`¥Î©ó´yzµo´²ªº¼Æ¾Ç±¡ªp¡C«ü¼Ð¡]¼Ð°O¡^ªº°ß¤@©Ê¦bpºâ¯à¶qºA±K«× (7.24) ¦¡ªº¹Lµ{¤¤¡A¸g±`·|¹J¨ìºÙ¬O van Hove Singularity ªºµo´²ª¬ªp¡C ¥ý¬Ý¤@ºûªº±¡ªp¡A¥ý¼È®É¤£¼g band index n ¡A«h D(£`) ¬O (7.29) ¡÷ (7.30) ¡÷ (7.31)¡A§Ú̬ݨì±a¯à¶q£`¤§±×²vªºµ´¹ïÈ¥X²{¦b¤À¥À¦pªG¦³¤@¨Ç°Ï°ì¯à±a¬O¥ªº¡A¨º´N·|³y¦¨¹s¥X²{¦b¤À¥À¦Óµo´²¤F¡C
¸Ô²Ó±´°Q (7.32) ¡÷ (7.41) ½Ð¦³¿³½ì¦P¾Ç¦Û¤v¬Ý´N¦n¤F¡AVan Hove Singularity ¥X²{¦bpºâ¹q¤l»PÕ£°ÊªººA±K«×¡A¦³®É¤]¥X²{¦b¥ú¾Ç§l¦¬ªº¹êÅç¶q´ú¤W¡C
¦Û¥Ñ¹q¤l¤U©Ò¦³ªººA³£¦³ k ªºµù¼Ð¡A¦Ó¦b¥»³¹©Ò±´°Qªº¶g´Á©Ê¦ì¶Õ¤U¡A¤S¦h¤F¤@Ó«ü¼Ð n¡C¦n¹³¬Ý°_¨Ó¶q¤lºAªº¼Æ¥Ø¤ñ¦b¦Û¥Ñ¹q¤lªº±¡ªpn¦A¦h«Ü¦h¡A¨ä¹ê¥»¼xºAªº¼Æ¥Ø¨Ã¨S¦³³Q¥[¿¡Aªí±¤Wªº©Ç²§ÂI¥u¬O·½¦Û¦p¦ó¼Ð©w¶q¤lºA³o¥ó¨Æ¬O¦³¥ô·N©Êªº¡C½d¨Ò¡G¦Û¥Ñ¹q¤lµ¹©w¥ô¦ó k¡A¥i¸Ñ¥X¤@²Õªi¨ç¼Æ £Z1k¡B£Z2k¡B£Z3k ¡D¡D¡D¡C¥¦Ìªº band index n ¤£¦P¡A¤]´N¬O¨ã¦³¤£¦P¯à¶q¥»¼xÈ¡A¦ý³o¨Çªi¨ç¼Æ¨ü¥²¾ºâ²Å TR §@¥Î¤U³£¦³¬Û¦Pªº¥»¼xÈ ¡C²{¦b¿ï¤@Ó˪Ŷ¡´¹®æ¦V¶q K¡A¦Ò¼{ £Zn,k+K ªº¡]¥²¾¡^¥»¼xÈ¡A§Y ei(k+K)£»R¡C¦ý¦]¬° eiK£»R = 1¡A¬G³oÓ¥»¼xȤ]´Nµ¥©ó eik£»R¡A¬OÄÝ©ó¬YÓ¥t¤@Óªi¨ç¼Æªº¥»¼xÈ¡C³oªí¥Ü¡A£Zn,k+K = £Zn',k ¡C®Ú¾Ú©R¦Wªº³W«h¥i¥H³o¼Ë©R¡A¦ý n' ȯA¤Î¯à¶q¥»¼xÈ´N¤£¤@©w¬O¦P¤@ÓȤF¡C
¦³¨âºØ¤èªk¥i¥H½T«O©Ò¦³ £Znk ªº¶°¦X¬O§¹³Æ«h½u©Ê¿W¥ß¡C¡]¨ä¤¤§¹³Æ©Ê¬O¥Ñ¥»¼xÈ°ÝÃD©ÒÀò±oªº©Ê½è¡A«O«ù§¹³Æ©Êªí¥Üªi¨ç¼Æ¨S¦³¤Ö±¼¡C¦Ó½u©Ê¿W¥ßªí¥Ü¨S¦³«½Æ©Ê¦h¥X¨Ó¡A§_«h¦h¥X¨Óªºªi¨ç¼Æ¥i¥Ñ¨ä¥Lªi¨ç¼Æªí¥Ü¦Ó³y¦¨½u©Ê¬Û¨Ì¡C¡^¡]©Ò¿×§¹³Æ©Ê´N¬O¨º²Õ¶°¦X¥i¥Î¨Ó®i¶}©Ò¦³ªº¨ç¼Æ¡A¹³´I§Q¸¯Å¼Æ¤¤ªº sin nx¤Î cos nx ¨ç¼Æ¨º¼Ë¡C¡^
²Ä¤@ºØ¤èªk¡A¥s reduced zone scheme ¡A¥u¦³¦b first BZ ¤º©w¸q ¡C³o¼Ë°µ¦ÛµM«OÃÒ¤£·|¦³¥t¤@Ó k' ·|³y¦¨ k = k' + K¡C
²Ä¤GºØ§@ªk¬O¤@©ñ±ó n index ¦Ó¥þ³¡¥Î k¡A¥B¤¹³\ k ©µ¦ù¨ì¾ãÓ˪Ŷ¡¡A¥sextended zone scheme ¡C¨âºØ§@ªk¶¡¦³ £Znk ¡ö¡÷ £Zk+Kn ¤§¹ïÀ³¡C
«ü©w¦P¾Ç̦ۤv¤vn¬Ý¡An¬ÝÀ´¡C°t¦X¹Ï 7.4¡CÁ`µ²
¦Û¤v¬Ý¡A²Ä¤@¥y¥X²{¤§ first index ªº "index" ¨º¦r¬O°Êµü¡AÀ³¸Ó¦Û¤v¬Ý±oÀ´³Ñ¤Uªº§a¡H
7.2.2 Bloch's Theorem ªº´I§Q¸¤ÀªR
¦b Fourier ªÅ¶¡«·s¼g¤UÁ§¤B®æ¤èµ{¦¡´£¨Ñ¤F¾®ºAª«²z³Ì¦³«Â¤Oªº¤u¨ã¤§¤@¡A¥¦¥i±N¹q¤l»P¶g´Á©Ê´¹®æ¥æ¤¬§@¥Îªº°ÝÃD¾É¤Þ¨ì¤@Ó²³æªºªñ¦ü¤ÀªR¡A¨Ã¥B¶i¤@¨B«ü¦V§óºë½Tªºpºâ¡C¨äI«áªº¼Æ¾Ç·N²[¬O¦b©ó¡A¤@Ó¶g´Á©Ê¨ç¼Æªº´I§Q¸¤À¸Ñ¨Ã¤£»Ýn´I§Q¸¿n¤Àªºªí¶H¡A¦Ó¬O´I§Q¸¯Å¼Æ¡C¡]³oÓ¤j®a¦bª«¼Æ¤¤À³¸Ó¾Ç¹L¡C¡^´«¥y¸Ü»¡¡A¶g´Á©Êªº´I§Q¸Âà´«¥u¦³¦b˪Ŷ¡®æ¤lÂI K ¤W¤~¤£¬°¹s¡C¡]½Ò¥»¤¤¤]¦³¦C¥X²³æªºÃÒ©ú(7.46)¡^¡]¥t¥~¡A½Ò¥»¤]¥Ü½d¤F¹ê»Ú¦a§â¹³¬OU(r)³o¼Ëªº¶g´Á¨ç¼ÆÂà´«ªº°Ê§@¡C³o¬O«Ü¦³¥Îªº½m²ß¡A±q (7.47) --> (7.48)¡A¨ä¤¤ ªº©w¸q¬O (7.49) ¦¡¡C¦P¾Ç̤@©wn¼ôŪ²M·¡¡C¡^(7.48)¦¡©Ò¥X²{ªº¹ï Bravais lattice ¨D©M¬OÃþ¦üªþ¿ý A ¸Ì±À±oªº (A.29) ¦¡§@ªk¡A¦Ó¦³ (7.50) ¦¡³o¼ËªºÃö«Y¡C³o¨Ï±o (7.48) ¦¡¥i¥H¶i¤@¨B¤Æ²¬°§ó²³æªº (7.51) ¦¡§Î¦¡¡C¦]¦¹¡A§@ (7.51) ªº¤ÏÂà´«¦^¨Ó¡C¥i±o (7.52)¡A§Y¼g¤U¤F U(r) = SK eiK.r UK ³o¼Ëªº´I§Q¸¯Å¼Æ¡Aª`·N¨ä¨D©M¬O°w¹ï¾ãÓ˪Ŷ¡®æ¤lªº¦UÂI¡A¦Ó¤£¬O¦b¥¬¨½²W°Ï¤¤¡C
¦ì¶Õ¬Ý¨ì¤F¡A²{¦b¨Ó¬Ýªi¨ç¼Æ¡CHamiltonianªº¥»¼x¨ç¼Æ¨Ã¤£«OÃҨɦ³ Bravais lattice ªº¶g´Á©Ê¡CµM¦Ó¡A¦b¥ý«e©w¤Uªº¾ãÓªº´¹Åé¼Ë«~½d³òªº¶g´Á©ÊÃä¬É±ø¥ó¡Aªi¨ç¼Æ¡]¦]¬°¦b¦¹¤@½d³ò¨ã¶g´Á©Ê¡^¦]¦¹¥i¥H¥ÎÂ÷´²ªº´I§Q¸¯Å¼Æ¡A¥H¥±ªi®i¶}¡A¦p (7.53) ©Ò¥Ü¡C³o²Õ¥±ªi¦³¤@Ó¦³¥Îªº©Ê½è¡AY§Ú̹ï¾ãÓÅé¿n V ¿n¤À¡A´N·|±o¨ì ¡ìdr eiq.r = V dq0¡A§Y (7.54) ¦¡¡C¤w¸g¤À§O¦³ (7.52) ¤Î (7.53) ªº¦ì¶Õ»Pªi¨ç¼Æªº§Î¦¡ªº±¡ªp¤U¡A§ÚÌ¥i¥H¥H·sªº¤è¦¡¼g¤UÁ§¤B®æ¤èµ{¦¡¡A¥H H -£`§@¥Î¨ì £Z¡A¨Ï¥Î (7.2) ¦¡¤¤ªº Hamiltonian´N·|µ¹¥X (7.55) ¦¡¡A§â U(r) ¦b K ªÅ¶¡®i¶}ªº©w¸q¥N¤JÄ~Äò¾ã²z --> (7.56)¡C§â r ¿n¤À±¼´N±o (7.57) --> (7.58)¡A³Ì«á¥i²¼ä¦a¼g¤U(7.59) ¦¡¡C(7.59) ¦¡ªº«n©Ê¦³¦n´XÓì¦]¡F(1) º¥ý¥¦¥¿¬O Bloch ©w²zªº«·s³¯z¡C¡]½Ò¥»¦³»¡©ú¬°¤°»ò¡A¨£ (7.60) ¤W¤U¬q¸¨ªº±À¾É¡C¡^(2) ¦¹¥~¡A(7.59) ¦¡¬O³\¦h²³æ¯à±aªñ¦ü¤èªkªº°_ÂI¡A¤]¬O²`¤J¶i¦æ¼ÆȹBºâ¥H¸Ñ¨M¯u¹ê°ÝÃDªº°_ÂI¡C
§â (7.59) ¦¡¼g¦¨¯x°}§Î¦¡¥¿¥i¥H¬ðÅã³o¨ÇnÂI¡C¬°¤Fµ¹¼ÆÈpºâ¯à¶i¦æ¡A¯x°}ªººû«×¤£¥i¥H¬OµL¤jªº¡A§_«h°j¸ô¤@¶i¥h´N¨«¤£¥X¨Ó¡A¤°»òªF¦è¤]§Oºâ¤F¡C¬°¤F±o¨ì¤@Ó¦³¤j¤pªº¯x°}¡A§ÚÌ´N¥²¶·°²³] UK ¦b¬Y¦³Ó¼ÆªºËªÅ¶¡®æ¤l K ½d³ò¤§¤º¤~¬O¤£¬°¹s¡A¨ä¥L UK ´N³£¬O¹s¡]©Î»¡¥i¥H³Q©¿²¤¡^¡C¥t¥~¦^¾Ð¦b²Ä¤@ BZ ¤º ¦V¶qªºÓ¼Æ«êµ¥©ó¼Ë«~©Ò§tªº´¹M¼Æ N¡C§Q¥Î³o¨âÂI«h (7.59) ¦¡¥i¥H³Q¼g¦¨ SKOKK'£Z(q-K) = 0¡A¨ä¤¤ SKOKK'£Z(q-K) ªº¯x°}§Î¦¡§Y¬O¥Hªí 7-1 ©Ò§e²{ªÌ¡C¡]¦P¾ÇÌn¥J²Ó¬Ý¤@¬Ý¨Ã¤F¸Ñ¨ä¬[ºc¡C¡^
³Ì«á¡A§â (7.59) §ï¼g¦¨ Dirac ²Å¸¹ªº§Î¦¡¤]¬O«Ü¦³¥Îªº¡G§Y (7.61) ¦¡ ¡C