Probability

 

"¼ö¨t²Îªº¦æ¬°¥Ñ¾÷²v¨M©w"¡A¦]¦¹¥H¤U¤¶²Ð´X­Ó­«­nªº¦Wµü»PÆ[©À¡C

 

¤Þ¨¥

¾÷²v±N"¤£½T©w©Ê"¶q¤Æ¡A©Ò¥H¦³¥Î¡A¨Ò¦p­°«B¹w³ø¡C

¾÷²v²z½×­ì¥»¬O¥Î©ó½ä³Õ¡C

¥»¨Óª«²z¾Ç®a¥H¬°Åé¨t½ÆÂø©Ò¥H¥Î¾÷²v¡A«á¨Óµo²{¦b·LÆ[²z½×¡]¶q¤l¤O¾Ç¡^¤¤¤]­n¥Î¨ì¡C

¾÷²v¦b¼öª«²z­«­n¡A¨t²Î¤¤²É¤l¼Æ¶qÃe¤j¡A¨Ï±o¥Î¸Ó¤èªk¤ÀªRªºµ²ªG¨¬°÷ºë½T¡C

 

¨Æ¥óµo¥Íªº¾÷²v¤§´y­z¤è¦¡¡A¤£¥i¯àµo¥ÍªÌ©w¬°¹s¡A½T©wµo¥ÍªÌ©w¬°1¡C¥i¯àµo¥Í¦ý¤£½T©wªÌ©w¬° 0 »P 1 ¤§¶¡ªº­È¡C

¾÷²v¤À¥¬³B³B¬°¥¿¡A¿n¤À(¥[Á`)±o 1

 

Â÷´²¾÷²v¤À§G

"¦³­­¦¸" ¨ú¼Ë ùØ

¦p»ë¤lÂY¥XªºÂI¼Æ¡B¨C­Ó®a®x¤¤¨àµ£¼Æµ¥

x ¬°Â÷´²ÀH¾÷ÅÜ¼Æ (disctete random variable)

i Ãþ«¬¨Æ¥ó¤§ x ªº­Èxi ¡]¦p¡G²Ä i ºØ»ë¤lÂY¥Xµ²ªG¡A©Î²Ä i ºØ®a¤¤¨àµ£¼Æ¡^¨ä¾÷²v¾÷²v¬° Pi

§Ú­Ì­n¨Dº¡¨¬¤@¯S©Ê¡A§Y¥[Á`±o 1

Σi Pi = 1

¥­§¡­È <x>

<x> = Σi xi Pi

§Y¨C¦¸¨ú¼Ë¨ìªºÀH¾÷ÅܼơA¥H¨ä"¾÷²v¬°Åv­«"¦X­p¤§¡C

 

¨Ò 3.1 ¥­§¡¨àµ£¼Æ 2.4!

 

¤]¥i©w x ªº§¡¤è­È(mean square value) < x2 > ¦p¤U¡G

< x2 > = Σi x2 Pi

¨Æ¹ê¤W¡A¥ô¦ó x ²Õ¦X¥Xªº¨ç¼Æ§Î¦¡ f(x) ¡A³£¥i¥H¨D¥­§¡

< f(x) > = Σi f(xi) Pi

 

¨Ò 3.2  ¨D< x > »P < x2 > ¡]½Ð¦Û¦æ½m²ß¡^

 

³sÄò¾÷²v¤À§G

x ¬° ³sÄòÀH¾÷ÅܼơA¥¦¦b x ¨ì x + dx ½d³ò¤§¤ºªºµo¥Í¾÷²v¬° P(x)dx

¦]¦¹¦³¿n¤À

∫ P(x) dx = 1

< x > = ∫ x P(x) dx

< x2 > = ∫ x2 P(x) dx

< f(x) > = ∫ f(x) P(x) dx

 

¨Ò 3.3 Gaussian ¤À§G¤Î¨ä¿n¤À ¡]­«­n¡^

 

½u©ÊÂà´«

y¡Bx ¬ÒÀH¾÷ÅܼÆ

y = ax + b

¦³

< y > = < ax + b >  = a < x > + b

 

¨Ò 3.4 Äá¤óµØ¤ó·Å«×Âà´«

 

Åܲ§¼Æ

·Qª¾ ¨ú¼Ë­È xi ªº¤À´²µ{«×¡H §Y x - < x >  ¤§·N

¦ý x - < x > ªº¥­§¡ < x - < x > > = < x > - < x > = 0

| x - < x > | «h³Â·Ð¡A

¬G¥Î §¡¤è®t (mean square deviation)

σx2 =  < ( x - < x > )2 >

¨Ã©w¸q¼Ð·Ç®t¬°

σx = √[ < ( x - < x > )2 > ]

 

¤@­Ó¦³¥ÎªºÃö«Y¦¡

σx2 = <x2> - <x>2

 

¨Ò 3.5 ºâ σx2

 

½u©ÊÂà´« »P Åܲ§¼Æ

­Y y = ax + b

«h¡]±À¾É¨£½Ò¥»¡^

σy = a σx

 

¨Ò 3.6

 

¿W¥ßÅܼÆ

Pu(u)du Pv(v)dv

«Ü®e©ö¥iÃÒ

<uv> = <u> <v>

 

¨Ò 3.7 Y = X1 + X2 + ... + Xn

¤W¨Ò¤§ À³¥Î (1) ´£ª@¹êÅç¶q´úºë«× --> ¦h¦¸ ´ú¶q

À³¥Î (2) random walk <x> = 0 ¡An ¨B«á σx = √n

 

 

¤G¶µ(¦¡)¤À§G

¦³¦Wªº "§B§V¤O´ú¸Õ" ©Î "§B§V¤O¹êÅç" ¨C¦¸¥u¦³¨âºØµ²ªG¡A¦¨©Î±Ñ¡A¾÷²v©h¥B©w¬° p ¤Î 1-p¡C¹ê¨Ò¦p¡A¥á»ÉªO¬Ý¤HÀY©Î¤å¦r¡C

 

Ex 3.8 ÀH¾÷ÅÜ¼Æ x ¤§µ²ªG«D 1 §Y 0¡A¾÷²v¦U¬° p ¤Î 1 - p¡A°Ý x ªº¥­§¡­È¡Bx2 ªº¥­§¡­È ¡]§¡¤è­È¡^¥H¤Î¼Ð·Ç®t¡C

< x > = 0 × ( 1 - p ) + 1 × p = p

< x2 > = 02 × ( 1 - p ) + 12 × p = p

σx = √( < x2 > - < x >2 ) = √( p ( 1 - p )   )

 

¤G¶µ¤À§G P(n,k) ¬O n ¦¸§B§V¤O´ú¸Õ¤U±o¨ì k ¦¸¦¨¥\ªº¾÷²v­È¡C¦¹¾÷²v¥i¸g¥Ñ¥H¤U·Qªk±À±o¡G(a) ¬Y¯S©w²Å¦X (n,k) ¡A§Y¨ú n ¦¸¡B¦¨ k ¦¸ªº®×¨Ò¡A¨ä¥X²{ªº¾÷²v¬O pk (1-p)n-k ¡A¨Ã¥B (b) ¦³ Cnk ºØ¤£¦P¤§±Æ§Ç¤èªk ¡C¦]¦¹¡A

P(n,k) = Cnk pk (1-p)n-k

 

¼Æ¾Ç¤Wªº¤G¶µ¦¡©w²z»¡¡G

( x + y )n = Σnk=0  Cnk x k yn-k

¦]¦¹§^¤H¥i»´©öÃÒ©ú

Σnk=0 P(n,k) = 1

§Y½T¹ê¬O¤@­Ó¦Xªkªº¾÷²v¤À§G¨ç¼Æ¡C

 

¥Ñ©ó¤G¶µ¦¡¤À§G¬O n ­Ó "¿W¥ßªº" §B§V¤O´ú¸Õ¤§©M¡A§Ú­Ì¦³¡]¦Û¦æÅçÃÒ¡^

< k > = n p

σk2 = n p (1-p)

 

¸Ó¤À§Gªº fractional width ©w¬°¼Ð·Ç®t°£¥H¥­§¡­È¡A σk / < k >¡A¬GÀH n ¼W¥[¦ÓÅܯ¶ ¡A¨£½Ò¥»¹Ï¡C

 

Ex 3.9 ÂY¤½¥­»ÉªO

 

Ex 3.10 ¾Kº~¨«¸ô