Probability
"¼ö¨t²Îªº¦æ¬°¥Ñ¾÷²v¨M©w"¡A¦]¦¹¥H¤U¤¶²Ð´XÓ«nªº¦Wµü»PÆ[©À¡C
¤Þ¨¥
¾÷²v±N"¤£½T©w©Ê"¶q¤Æ¡A©Ò¥H¦³¥Î¡A¨Ò¦p°«B¹w³ø¡C
¾÷²v²z½×쥻¬O¥Î©ó½ä³Õ¡C
¥»¨Óª«²z¾Ç®a¥H¬°Åé¨t½ÆÂø©Ò¥H¥Î¾÷²v¡A«á¨Óµo²{¦b·LÆ[²z½×¡]¶q¤l¤O¾Ç¡^¤¤¤]n¥Î¨ì¡C
¾÷²v¦b¼öª«²z«n¡A¨t²Î¤¤²É¤l¼Æ¶qÃe¤j¡A¨Ï±o¥Î¸Ó¤èªk¤ÀªRªºµ²ªG¨¬°÷ºë½T¡C
¨Æ¥óµo¥Íªº¾÷²v¤§´yz¤è¦¡¡A¤£¥i¯àµo¥ÍªÌ©w¬°¹s¡A½T©wµo¥ÍªÌ©w¬°1¡C¥i¯àµo¥Í¦ý¤£½T©wªÌ©w¬° 0 »P 1 ¤§¶¡ªºÈ¡C
¾÷²v¤À¥¬³B³B¬°¥¿¡A¿n¤À(¥[Á`)±o 1
Â÷´²¾÷²v¤À§G
"¦³¦¸" ¨ú¼Ë ùØ
¦p»ë¤lÂY¥XªºÂI¼Æ¡B¨CÓ®a®x¤¤¨àµ£¼Æµ¥
x ¬°Â÷´²ÀH¾÷ÅÜ¼Æ (disctete random variable)
i Ãþ«¬¨Æ¥ó¤§ x ªºÈxi ¡]¦p¡G²Ä i ºØ»ë¤lÂY¥Xµ²ªG¡A©Î²Ä i ºØ®a¤¤¨àµ£¼Æ¡^¨ä¾÷²v¾÷²v¬° Pi
§ÚÌn¨Dº¡¨¬¤@¯S©Ê¡A§Y¥[Á`±o 1
Σi Pi = 1
¥§¡È <x>
<x> = Σi xi Pi
§Y¨C¦¸¨ú¼Ë¨ìªºÀH¾÷ÅܼơA¥H¨ä"¾÷²v¬°Åv«"¦Xp¤§¡C
¨Ò 3.1 ¥§¡¨àµ£¼Æ 2.4!
¤]¥i©w x ªº§¡¤èÈ(mean square value) < x2 > ¦p¤U¡G
< x2 > = Σi x2 Pi
¨Æ¹ê¤W¡A¥ô¦ó x ²Õ¦X¥Xªº¨ç¼Æ§Î¦¡ f(x) ¡A³£¥i¥H¨D¥§¡
< f(x) > = Σi f(xi) Pi
¨Ò 3.2 ¨D< x > »P < x2 > ¡]½Ð¦Û¦æ½m²ß¡^
³sÄò¾÷²v¤À§G
x ¬° ³sÄòÀH¾÷ÅܼơA¥¦¦b x ¨ì x + dx ½d³ò¤§¤ºªºµo¥Í¾÷²v¬° P(x)dx
¦]¦¹¦³¿n¤À
∫ P(x) dx = 1
< x > = ∫ x P(x) dx
< x2 > = ∫ x2 P(x) dx
< f(x) > = ∫ f(x) P(x) dx
¨Ò 3.3 Gaussian ¤À§G¤Î¨ä¿n¤À ¡]«n¡^
½u©ÊÂà´«
y¡Bx ¬ÒÀH¾÷ÅܼÆ
y = ax + b
¦³
< y > = < ax + b > = a < x > + b
¨Ò 3.4 Äá¤óµØ¤ó·Å«×Âà´«
Åܲ§¼Æ
·Qª¾ ¨ú¼ËÈ xi ªº¤À´²µ{«×¡H §Y x - < x > ¤§·N
¦ý x - < x > ªº¥§¡ < x - < x > > = < x > - < x > = 0
| x - < x > | «h³Â·Ð¡A
¬G¥Î §¡¤è®t (mean square deviation)
σx2 = < ( x - < x > )2 >
¨Ã©w¸q¼Ð·Ç®t¬°
σx = √[ < ( x - < x > )2 > ]
¤@Ó¦³¥ÎªºÃö«Y¦¡
σx2 = <x2> - <x>2
¨Ò 3.5 ºâ σx2
½u©ÊÂà´« »P Åܲ§¼Æ
Y y = ax + b
«h¡]±À¾É¨£½Ò¥»¡^
σy = a σx
¨Ò 3.6
¿W¥ßÅܼÆ
Pu(u)du Pv(v)dv
«Ü®e©ö¥iÃÒ
<uv> = <u> <v>
¨Ò 3.7 Y = X1 + X2 + ... + Xn
¤W¨Ò¤§ À³¥Î (1) ´£ª@¹êÅç¶q´úºë«× --> ¦h¦¸ ´ú¶q
À³¥Î (2) random walk <x> = 0 ¡An ¨B«á σx = √n
¤G¶µ(¦¡)¤À§G
¦³¦Wªº "§B§V¤O´ú¸Õ" ©Î "§B§V¤O¹êÅç" ¨C¦¸¥u¦³¨âºØµ²ªG¡A¦¨©Î±Ñ¡A¾÷²v©h¥B©w¬° p ¤Î 1-p¡C¹ê¨Ò¦p¡A¥á»ÉªO¬Ý¤HÀY©Î¤å¦r¡C
Ex 3.8 ÀH¾÷ÅÜ¼Æ x ¤§µ²ªG«D 1 §Y 0¡A¾÷²v¦U¬° p ¤Î 1 - p¡A°Ý x ªº¥§¡È¡Bx2 ªº¥§¡È ¡]§¡¤èÈ¡^¥H¤Î¼Ð·Ç®t¡C
< x > = 0 × ( 1 - p ) + 1 × p = p
< x2 > = 02 × ( 1 - p ) + 12 × p = p
σx = √( < x2 > - < x >2 ) = √( p ( 1 - p ) )
¤G¶µ¤À§G P(n,k) ¬O n ¦¸§B§V¤O´ú¸Õ¤U±o¨ì k ¦¸¦¨¥\ªº¾÷²vÈ¡C¦¹¾÷²v¥i¸g¥Ñ¥H¤U·Qªk±À±o¡G(a) ¬Y¯S©w²Å¦X (n,k) ¡A§Y¨ú n ¦¸¡B¦¨ k ¦¸ªº®×¨Ò¡A¨ä¥X²{ªº¾÷²v¬O pk (1-p)n-k ¡A¨Ã¥B (b) ¦³ Cnk ºØ¤£¦P¤§±Æ§Ç¤èªk ¡C¦]¦¹¡A
P(n,k) = Cnk pk (1-p)n-k
¼Æ¾Ç¤Wªº¤G¶µ¦¡©w²z»¡¡G
( x + y )n = Σnk=0 Cnk x k yn-k
¦]¦¹§^¤H¥i»´©öÃÒ©ú
Σnk=0 P(n,k) = 1
§Y½T¹ê¬O¤@Ó¦Xªkªº¾÷²v¤À§G¨ç¼Æ¡C
¥Ñ©ó¤G¶µ¦¡¤À§G¬O n Ó "¿W¥ßªº" §B§V¤O´ú¸Õ¤§©M¡A§Ú̦³¡]¦Û¦æÅçÃÒ¡^
< k > = n p
σk2 = n p (1-p)
¸Ó¤À§Gªº fractional width ©w¬°¼Ð·Ç®t°£¥H¥§¡È¡A σk / < k >¡A¬GÀH n ¼W¥[¦ÓÅܯ¶ ¡A¨£½Ò¥»¹Ï¡C
Ex 3.9 ÂY¤½¥»ÉªO
Ex 3.10 ¾Kº~¨«¸ô