·Å«× »P ªi¯Y°Ò¤À§G
§Q¥Î«e±«Ø¥ßªºª¾ÃÑ¡A§Ú̱N±À¾É¥X¦³¦Wªº "ªi¯Y°Ò¤À§G"¡A³o¬O¼öªºª«²z¾Çùرªº key concept
¡]¦n¹³°Ñ¥[Æ[¥ú¹Î¡A¨C½ë³£¦³§¹¾ãªº¦æµ{¡C¡^
·Å«×·íµMÃö«Y§N¼ö¡A¸û§NªºªF¦è·Å«×¸û§C¡C
¦ý·Å«×¤]¬O¦³¤@Ӽƶq¡]¼Æ¥Ø¦r¡^ªº¡A¦¹¤@¼Æ¦rªº·N¸q¬°¦ó¡H¡]¸õ¤ô¡BÅé¾Þ¡B¯kµh·P¡B©ü°g«ü¼Æ¡A³£¬O 1 ¨ì 10¡^
¼ö¥¿Å
¬°¦^µª¤Wz°ÝÃD¡A¦Ò¼{±N§N¡B¼öª«Å鱵IJ¡C¤W¤@³¹¤v°Q½×¹L¡A¯à¶q·|¦³¬y°Ê¡A¥B¸gÅç§i¶D§Ṳ́@©w¥Ñ¼ö¨ì§N¡C¦¹¹Lµ{¡]¼ö¹Lµ{¡^¤¤¤º§tªº¯à¶q¤Î·Å«×³£·|¦³©Ò§ïÅÜ¡C
¤@¬q®É¶¡«á¡A·í¤£¦AÅܤơA¿×¤§¨âª«Åé¹F¦¨¼ö¥¿Å¡C
¬Ý¨Ó¦ü¥G¦³¤£¥i°fªº¨Æ±¡µo¥Í¤F¡C
¼ö¹Lµ{¨M©w¤F®É¶¡ªº¤è¦V¡]®É¶¡ªº½bÀY«ü¦V¹F¦¨¼ö¥¿Åªº¤è¦V¡^
¦pªG´XÓª«Å餬¬Û¤§¶¡¹F¦¨¼ö¥¿Å¡A«h¥¦Ìªº·Å«×¤]³£¤@¼Ë¡A¦¹¤@Æ[©À¤ºÂæb "¼ö¤O¾Ç²Ä¹s©w«ß" ¤¤
¼ö¤O¾Ç²Ä¹s©w«ß
¤À§O»P²Ä¤Tª«¹F¦¨¼ö¥¿Åªº¨âª«¡A¤¬¬Û¤§¶¡¤]¤v¹F¼ö¥¿Å¡C
Áö¼Ð²Ä¹s¡A¦ý¨Æ¹ê¤W³Ì«á´£¥X¡A¦´Á¾ÇªÌ¤£»{¬°»Ýn³o¼Ë¦A¦h©w¤@Ó©w«ß¡C¤£¹L¥¦Ë´£¨Ñ¤F§ÚÌ "¤§©Ò¥H" ¥i¥H¨Ï¥Î·Å«×p¨Ó¶q·Å«×ªº¾Ç²z°ò¦¡C
¥H»PÂê©w "»P·Å«×¦³Ãöªºª«©Ê"¡A¦b¼ö¥¿Å«áŪ¨ú¤§ÂÇ¥H¤ñ¸ûª«Å骺§N¼ö¡A³o´N¬O·Å«×p¡C
·Å«×p¯à¥Î¡A¬O¼ö¤O¾Ç²Ä¹s©w«ßªº¥t¤@»¡ªk¡C
¡]¦UºØ¡^·Å«×p
n¦n¥Î¡A¨ä¤ñ¼ö»Ý »·§C©ó ³Q´úª«Åé
¤@±`¨£¤jÃþ¡A¥Î¤F²GÅ鿱µÈªºì²z
¶q¹qªý¤]¬O¤@Ó¤èªk¡A¦]¬°¹qªý¹ï·Å«×±Ó·P¡C¦p¥Õª÷¡C
§Q¥Î²z·Q®ðÅé¤èµ{¦¡¤]¬O¤@ªk¡A¦ý¦¹ªk·¥§C·Å®É¦]®ðÅé·|²G¤Æ¦Ó¥¢®Ä
¤@Ó¶W§C·Å¤U±`¥Îªº¤èªk¬O²G®ð¦@¦s¤U¶q»]®ðÀ£
¥H¤W¤èªk³£¦³§Q¥Î¨ì¹ï·Å«×±Ó·Pª«©Ê¡A¦ý«o³£¤£¬O½u©Êªº
®³¤°»ò§@¼Ð·Ç¡H
¤Q¤E¥@¬ö¡A¥d¿Õ¤ÞÀºªºÆ[©À³Q´£¥X
«á¨Ó¡A¤H̵o²{¥i¥H¥Î¾÷²v½×ªº²Îpªº¤èªk¨Ó©w·Å«×¡A³o»Ýn¥Î¨ì·LÆ[ºA»P¥¨Æ[ºAªº·§©À¡A¥H¤U¤¶²Ð
·LÆ[ºA»P¥¨Æ[ºA
°Ï¤À·LÆ[ºA»P¥¨Æ[ºA¡A¦Ò¼{¥H¤U½d¨Ò
Ex 4.1 ¤@¦ÊӻɪT¦³ n ÓÀY¥X²{ªº¾÷²v¡]¨£½Ò¥»¡^¡]³t¹©±¥Ï¥Ï¼Ö¡H¡^
§e²{¨âÓÃöÁäÂI¡G
1. ¨t²Î¥Ñ¤j¶q¥X²{²v¬Ûµ¥ªº·LÆ[ºA©Ò´yz
2. §Ú̹ê»Ú¤W¦b¶q´úªº¬O¨t²Î ¥X²{²v¤£¬Ûµ¥¤§¥¨Æ[ºAªº©Ê½è¡]¤£¦Pªº¥¨Æ[ºA¹ïÀ³¨ì¤£¦P¼Æ¥Øªº·LÆ[ºA¡A¦]¦¹¾÷²v¤£¦P¡^
¨t²Î¦b¯à¶q¬O E ®Éªº ·LÆ[ºA¦³ Ω(E) ¨º»ò¦h ¡A¦Ó«áªÌ¬O¤@Ó«ÜÃe¤jªº¶q¡C
·LÆ[ºAºc¦¨¥¨Æ[ºAªº¹CÀ¸³W«h
a system will appear to choose a macroscopic configuration which maximizes the number of
microstates.³o¬O°ò©ó¤U¦C°²³]¡G
(1) each one of the possible microstates of a system is equally likely to occur;
(2) the system's internal dynamics are such that the microstates of the system are continually changing;
(3) given enough time, the system will explore all possible microstates and spend an equal time in each of them.¡]¹M¾ú²z½×¡^
¤]´N¬O»¡¡A
These assumptions imply that the system will most likely be found in a configuration which is represented by the most microstates.
·Å«×¤§²Îp¤Wªº©w¸q
¨t²Î 1 »P¨t²Î 2 ¦³¼ö±µÄ²¡A¦ý¨âªÌ¤@°_¹jÂ÷©óÀô¹Ò¤§¥~¡A¦]¦¹¦³
±`¼Æ = E = E1 + E2
Ω(E) = Ω1(E1)Ω2(E2)
³Ì¥i¯àªº E1¡BE2 ¤À³Î¡A¬O¯à¨Ï Ω1(E1)Ω2(E2) ³Ì¤jªº¨º¤@²Õ
§ä d Ω1(E1)Ω2(E2) / dE1 : = 0 ¡]·¥¤j®É¬°¹s¡^
==> Ω2(E2) [d Ω1(E1)/ dE1] + Ω1(E1) [d Ω2(E2) / dE2 ] [ dE2 / dE1] = 0
¦ý E = ±`¼Æ = E1 + E2¡A¬G dE2 / dE1= -1
¦P°£¥H Ω1(E1)Ω2(E2) 즡Åܬ°
[1/Ω1(E1)] [d Ω1(E1)/ dE1] - [1/ Ω2(E2)] [d Ω2(E2) / dE2 ] = 0
¤]´N¬O
d lnΩ1(E1)/ dE1 = d lnΩ2(E2)/ dE2
©w¸q
1/(kBT) = d lnΩ/ dE
¨ä¤¤ kB = 1.3807 × 10-23 KJ-1
«ä¦Ò¡G³o¬O·Å«×¡H«ç»ò¦³³o¼Ëªº°ªF¦è·Å«×¡H
«e±½Í¹L¡A«Ü¦hªF¦è³£¥i¥H°µ·Å«×p¡C·í¥Nªºª«²z¾Ç®a¿ï¤F³Ì²z·Qªº(²z½×)·Å«×p¡AµM«á°®¯Ü±N¤§©w¸q¬°·Å«×¡C
¤Wz©w¸q¤¤, Ω»P E ³£¨S¦³»ö¾¹¥i¥Hª½±µ¶q¡C
©Ò¥H²{¦b§Ú̪¾¹D¬°¤°»òn©w¥X²Ä¹s©w«ß¤F (n¦b²Îpªº²z½×®Ø¬[¤U©w·Å«×)
°ÝÃD¡Gµ¹§A¤@Å|¼³§JµP¡A½Ð§Aºâ¥¦ªº·Å«×¡A¥i¥H¶Ü¡H¤£¥i¥H¶Ü¡H
¨tºî (Ensemble)
Ensemble ªº°ò¥»^¤å¦r¸q :
We are using probability to describe thermal systems and our approach is to imagine repeating an experiment to measure a property of a system again and again because we cannot control the microscopic properties (as described by the system¡¦s microstates). In an attempt to formalize this, Josiah Willard Gibbs in 1878 introduced a concept known as an ensemble. This is an idealization in which one consider making a large number of mental ¡¥photocopies¡¦ of the system, each one of which represents a possible state the system could be in.
¤TºØ
microcanonical :
ensemble ¤ºªº¨C¤@Ó system ¬Ò¨ã¬Û¦P©T©wªº¯à¶q
subtle language : ¬J "¬Û¦P" , ¤S "©T©w" ?
canonical ensenmble :
¦¹¤@ ensumble ¤¤¨C¤@Ó¨t²Î¬Ò±µ»P¤@¼ö®w¥æ´«¯à¶q, ¨ä¹ê T will be fixed.
grand canonial ensemble
¦¹¤@ ensemble ¤¤¨C¤@Ó¨t²Î¬Ò»P¤@¼ö®w¥æ´«¯à¶q¤Î²É¤l¡A¨t²Î¤§·Å«×»P¤Æ¾Ç¦ì¶Õ«í©w¡C
«ä¦Ò¡GGibbs ´£¥X¤F ensemble ·§©À¡A ¨ì©³¦³¤°»ò·N¸q«¤j¤§³B¡H
( °t¦X¹M¾ú°²»¡®É, ¦³¸É®»¨ì¨t²Îªº¦æ¬°¡C )
Canonical Ensemble¡]¥¿«h¨tºî¡^
»P«e±¤@¼Ë¦Ò¼{¿W¥ß¹jµ´©ó¥~¬Éªº¨âÓ¤¬¬Û³s±µ¨t²Î¡A¦³©T©wÁ`¯à E ¡]¦]¬°¹jµ´¡^¡A¥u¬O¦¹¨Ò¤¤¤@Ó¤ñ¥t¤@Ó¤j«D±`¦h¡A ¬G¤À§O¦³Á`¯à E -ε ¤Î ε¡C¨t²Î¯à¶q ε ¤£¦A¬O©T©w¡] E ¬O©T©w¡^¡A ²{¦b§ÚÌ·Qª¾¹D³oÓ¯à¶q¬O ε ¤§¤p¨t²Îªº¾÷²v¡C
§ÚÌ¥ý¦Ò¼{°²³]¨t²Î¤@Ó¯à¶qÈ ε ªº¤@Ó·LÆ[ºA ¡C¡]¬°¤°»òn§@³oÓ°²³]¡H¬°¤°»ò¥i¥H§@³oÓ°²³]¡H¡^ «h ¨t²Î ¦b¦¹·LÆ[ºA (¯à¶qÈ ε) ªº¾÷²v¬O¡G
P(ε) ∝ Ω( E -ε) × 1
³oÓ ε ¨t²Î¤ñ E -ε ªº ¨t²Î¡]¦b¦¹§êºt¼ö®w¡^¤p«Ü¦h¡A§Yε << E
ln Ω( E -ε) = ln Ω( E ) - ε d ln Ω( E ) / dE + ...
±N·Å«×ªº©w¸q d ln Ω( E ) / d E = 1/ (kBT) ¤Þ¤J¤W¦¡¡A¦³
ln Ω( E -ε) = ln Ω( E ) - ε/( kBT ) + ...
©¿²¤°ª¦¸¶µ´N¦³
Ω( E -ε) = Ω( E ) e-ε/( kB T )
«h°t¦X¤@¶}©l P(ε) ∝ Ω( E -ε) × 1 ¡A´N¦³
P(ε) ∝ e-ε/( kB T )
³o´N¬O¦³¦Wªºªi¯Y°Ò¤À§G¡B¥¿«h¤À§G¡A¦Ó e-ε/( kB T ) «h¥s ªi¯Y°Ò¦]¤l (Boltzman factor)¡C
±q¨ç¼Æªº¦æ¬°¨Ó¬Ý¡A·Å«× T ®É¡A¨t²Î¯à¶q¤p©ó kBT ªÌ¦³¬Û·í¤§¾÷·|¥X²{¡C¤j©ó kBT ªÌ«h¥X²{¾÷·|¤Ö«Ü¦h¡C
P (Er) = e-Er / ( kB T ) / Σi e-Ei / ( kB T )
³oÓ¤À¥À Σi e-Ei / ( kB T ) ¥s§@¤À°t¨ç¼Æ (partition function)
Ex 4.2 ¹q¸£¼ÒÀÀ¦ÛµM²£¥Íªi¯Y°Ò¤À§G¡]«n¡^
Step 1. ³]¾ã»ôªºªì©l¤À§G¡A¨CÓ¦ì¸m§¡¥u¤@Ó¶q¤l¡C
Step 2. ÀH¾÷¨ú¨â¦ì¸m¡A¦©¤@¶q¤l¥[¨ì¥t¤@¦ì¸m¥h¡C
Step 3. «ÂвĤG¨B
¸É¥R¡Ghttp://comp.uark.edu/~jgeabana/mol_dyn/«ä¦Ò¡G¤W±³oÓ³W«h¬Û·í²³æªº¹q¸£¼ÒÀÀ¡A¬°¤°»ò·|¦³³o»òÅå¤Hªºµ²ªG¡H¦Ó¯à§e²{¥Xªi¯Y°Ò¤À§Gªº§Î»ª¡C¥¦¨ì©³§ì¨ì¤F¤°»ò®Ö¤ß¯S¼x¡H
´£¥Ü¡G¤@Ó¤£Â_¥æ©öªº¨t²Î¡A³Q¥æ´«ªº¶q¦u«í¡A¨Cӥ洫ªºÓÅé¾÷·|§¡µ¥¡C
°ÝÃD¡G¯à¶q¦ó¼w¦ó¯à¡A¥i¥X²{¦bªi¯Y°Ò¦]¤l«ü¼Æªº¤À¤l¤W¡H
ªi¯Y°Ò¤À§GªºÀ³¥Î
©w¸qβ ≡ 1/ (kBT) ¥H²¤Æ®Ñ¼g¡A¤]´N¬O»¡
β = d lnΩ/ dE
Ex 4.3 ³Ì²³æªº¡AÂùºA¨t²Î (Two state system)¡Aª`·N°ª§C·Å·¥
¨t²Î¥u¦³¨âÓ·LÆ[ºA¡A¯à¶q¤À§O¬° 0 »P ε
¨D P(0)¡BP(ε)¡B< E > »P·Å«×ªºÃö«Y
Ex 4.4 µ¥·Å¤j®ð¤¤¡A¤À¤l¿@«×ÀH°ª«×¤§ÅܤÆ
n(z) = n(0) e-mgz/(kBT)
¡]¥´¦a¾Q§l¦Ç¹Ð¡H¡^
Ex 4.5 ¥[¼öÅý¤Æ¾Ç¤ÏÀ³ÅܧÖ
¬¡¤Æ¯à Eact ªº¤ÏÀ³¡A¨ä¤ÏÀ³³t²v¥¿¤ñ©ó e-Eact/(kBT)
¨å«¬¤§ Eact ¬° 0.5 eV¡A«h«Ç·Å¤U ¥[¼ö 10 «×¡A ³t²v¥[¿¡C
Ex 4.6 ¤Ó¶§¤¤¤ß®Ö¿Ä¦X
p+ + p+ → d+ + e+
E = e2 / (4πε0r)
e-E/(kBT) ~ 10-400
©Ò©¯¦³¬ïÀG®ÄÀ³¡A¨Ï®Ö¿Ä¦X¤´±o¥Hµo¥Í¡C