´X¦ó (I)

 

§Îª¬ªº¼Æ¾Ç¡B¹êÅ窺¼Æ¾Ç

·Q¹³¤Oµo´§¡B¤ß¤¤ªº¤p¦t©z¡B"¼Ò«¬"

§Îª¬¡B¤ñ¨Ò»P¬Û¦ü©Ê

±q³]­p¹Ï¨ì§¹¦¨«~¡A§Îª¬ªº¬Û¦ü©Ê

ø»s¦a¹Ï

Geo §Æþ¤å­ì·N¬O¤g¦a¡B´ú¶q¡C"´X¦ó" ¬O®}¥ú±Ò¡B§Qº¿Äu½Ķ¡C

 

´X­Ó´X¦óªº­±¦V (¾Ç´Á¥½ÁÙ¦³§ó¦h)

§Æþªº´X¦ó¦¨´N

²¦¹F­ô©Ô´µ©w²z¡G

°ÝÃD¡G¦ó¿×²¦¤ó©w²z¡H¡]§@·~¡G¦p¦ó©w¸qª½¨¤¡^

¥j¤¤°ê¥s"¤ÄªÑ©¶©w²z"

¥j®Ñ¤¤¬Æ¦ÜÂà­z¤j¬ê¦]¦¹ªv¤ô¦¨¥\¡A´«¥Î²{¥Nªº»y¨¥¡A¬OÀ³¥Î¼Æ¾Ç­ì²z¦¨´Nºë±Kªº¤j«¬¤uµ{¡C

ÃÒ©úªº¤èªk«Ü¦h¡A¡]¦ý¦b¦¹¤£±Ä¥Î¤T¨¤¨ç¼Æªº¥¿¾l©¶©w²z sin2θ + cos2θ = 1¡A³o¬O¦]¬°³o­Ó¤T¨¤¨ç¼Æªº©w²z¥»¨­´N¬O¥Ñ²¦¤ó©w²zÃÒ©ú¥X¨Óªº¡^¡A¥H¤U¤¶²Ð¤@­Ó¤ñ¤§¹Ï¹³¤ÆªºÃÒ©ú¡C


¡]¹Ï¤ù¥X³B¡Gºû°ò¦Ê¬ì¡^

http://zh.wikipedia.org/zh-tw/¤ÄªÑ©w²z

§Ú­Ì«ç¼Ë¬Ý²¦¤ó©w²z¡H

¦hºû«×ªÅ¶¡¤¤ªø«×ªº¥»½è¡C§Y¡Aªø«×»P¨ä§ë¼v¦b§Cºû«×ùتºªø«×¡A¥¦­Ì¤§¶¡¦³¤@©wªºÃö«Y¡C

 

½Ö¤£»Ý­n²¦¤ó©w²z¡H

¥Í¦s¦b¤@ºûªÅ¶¡¤¤¤§´¼¼z§Î¦¡¡C

 

¼Ú°ò¨½¼w¡G¤½³]»PÃÒ©ú

¥j§Æþ¼Æ¾Ç®a¼Ú´X¨½±oªº¡m´X¦ó­ì¥»¡n´£¥X¤F¤­±ø¤½³]¡CÀY¥|±ø¤½³]¤À§O¬°¡G

  1. ¥Ñ¥ô·N¤@ÂI¨ì¥ô·N¤@ÂI¥i§@ª½½u¡C
  2. ¤@±ø¦³­­ª½½u¥i¥HÄ~Äò©µªø¡C
  3. ¥H¥ô·NÂI¬°¤ß¤Î¥ô·Nªº¶ZÂ÷¥i¥Hµe¶ê¡C
  4. ¤Zª½¨¤³£¬Ûµ¥¡C

²Ä¤­±ø¤½³]»¡¡G¦P¤@¥­­±¤º¤@±øª½½u©M¥t¥~¨â±øª½½u¬Û¥æ¡A­Y¦b¬Y¤@°¼ªº¨â­Ó¤º¨¤ªº©M¤p©ó¨âª½¨¤¡A«h³o¨âª½½u¸gµL­­©µªø«á¦b³o¤@°¼¬Û¥æ¡C

¬Oª½¤Ø»P¶ê³Wªº´X¦ó

 

´£«e«ä¦Ò

¥­¦æ½u¥Ã¤£¬Û¥æ¡A°ÝÃD¦b ¤°»ò¬O¡u¥Ã¤£¡v¶Ü¡HÁÙ¬O ¦ó¿×¡u¥­¦æ½u¡v¡H
¨â¥­¦æ½u³Ìªñ¶ZÂ÷¥i¨D¡A©µ¦ù L «á¡A¶ZÂ÷¤£ÅÜ¡A±N L ÁͪñµL½a¡C

¨â±øª½½u¡A¤è¦V¬Û¦P¡A¿×¤§¥­¦æ¡C

ÃöÁä¦b¤°»ò¬O¡uª½½u¡v?
¡]1¡^¤£Ås¡A¿×¤§ª½
¡]2¡^»P½u¥~°Ñ¦ÒÂI®É®Éº¡¨¬¤ÄªÑ©¶Ãö«Y

²y­±¤W¦p¦ó©w¸qª½½u¡H

 

«ä¦Ò¡G¤T¨¤§Îªº¤º¨¤©M¬° 180 «×¡A¥|¨¤§Î...¡B¤­¨¤§Î...¡A¦³³W«h¥i´`¶Ü¡H

 

¶ø¨Ì°Çªº¦h­±Å餽¦¡

v - e +  f = 2

¨ä¤¤ v¡Bf¡Be ¦U¥Nªí "³»ÂI (vertex)"¡B"­± (face)"¡B"Ãä (edge)" ªº¼Æ¥Ø¡C

http://140.128.93.186/~chents/MG11

¦p¦ó²z¸Ñ

ÀJ¨è®aªºÆ[ÂI

«ä¦Ò¤T¨¤À@³»ÂI¡B¥|¨¤À@³»ÂI¡B. . . n ¨¤À@³»ÂI¡A¦bºI¥h¤@¨¤ ( v' = v - 1 + n ) ¨Ó¼W¥[¤F¤@­Ó­± ( f' = f + 1) ®Éªºµ²ªG¡G¦P®É¤]¼W¥[¤F n ­ÓÃä ( e' = e + n )

¡]­È±oª`·Nªº¬O¡A¤W­zºI¨¤ªº°Ê§@¬O¥i °fªº¡C ¡^

¥i¨£ v' - e' + f' = v - e + f  ·|¬O±`¼Æ

³Ñ¤Uªº°ÝÃD¬O¡A³o­Ó±`¼Æ­È¬O¦h¤Ö

¦Ò¼{³Ì²³æªº¥|­±ÅéÀ@

1 + n = (n - 1) + ?

¥i¨£³o­Ó "?" ¬O 2

¤@¦¸ºI¥h¨â­Ó³»¨¤¥i¥H¶Ü¡H¸Õ¸Õ¬Ý

¤@¦¸¤Á±¼¨â­Ó³»ÂIªº±¡§Î

¤ÀªR¡G°²³]¤Á­±»P¦h­±Åé¬Û¥æªº·sÂ_­±¦³ n ­Ó³»ÂI¡A

³»ÂI¡Gv' = v + n - 2 ¡]²£¥Í¤F n ­Ó·s³»ÂI¡A¦ý­ì¥»¦³¨â­Ó³»ÂI³QºI±¼¤F¡^

Ãä¡Ge' = e + n - 1 ¡]Àôª¬ n ³»ÂI³ò¥X n ­ÓÃä¡A¦ý­ìºI¨¤¨â­Ó³»ÂI¶¡¦³¤@­ÓÃä¤Ö±¼¤F¡^

­±¡G f' = f + 1 ¡]ºI¨¤ªº°Ê§@¡A¨Ã¥¼Åý­ì­±Å骺­±¦³´î¤Ö¡A¤Ï­Ë¬O¦h¤F¤@­ÓºI­±¡^

¦p¦¹¡A¤´Â¤@¼Ë¬O v' - e' + f' = v - e + f

¡]¨ä¥LªºÃÒ©ú¤è¦¡¥i¨£ºû°ò¦Ê¬ì©Î¬ì´¶®Ñ¡^

ÃÒ©ú : http://plus.maths.org/content/eulers-polyhedron-formula

 

¸É¥R¡G°ªºû«×¤½¦¡
( http://www.math.osu.edu/~fiedorowicz.1/math655/HyperEuler.html )

 

Gauss-Bennet ©w²z

 

´X¦ó»PªÅ¶¡³W«ß (´¹Åé»P¹ïºÙ©Ê)

 

 

¥ú¾Ç»P´X¦ó

(´X¦ó°_·½«Ü¦­¡A»P¥ú¾ÇªºÃö«Y¤]«Ü±K¤Á)

¬°¤°»òªñªºªF¦è¬Ý°_¨Ó¤ñ¸û¤j¡H

µø½u±q²´¤¤®g¥X¡H

¤Ï®g»P§é®g

­±Ãè»P³zÃè

¤j¤@ª«²z¤¤ªº´X¦ó¥ú¾Ç

http://163.13.111.54/general_physics/week-08_day-1__geometrical_optics.html

 

¸ÑªR´X¦ó

®y¼Ð

µ²¦X¤F¨ç¼Æ»P´X¦ó¡AªÅ¶¡¤¤ªºª½½u¡B¦±½u¡A³£¬O¨ç¼Æ©Îº¡¨¬¬Y¤èµ{¦¡ªº¸Ñ¡C

 

 

¦V¶qªÅ¶¡¡]¸ÑªR´X¦ó»P¦V¶qªºÃö«Y¡^

¦V¶q¡G°ª¤¤¼Æ¾Çªº©w¸q¡H

 

ºû«×¡H

½u©Ê¿W¥ß

¦³ N ­Ó¦V¶q¡A­Y¥ô¦ó¤@­Ó³£¤£¯à°÷³z¹L¨ä¥Lªº¦V¶q½u©Ê²Õ¦X¦Ó¦¨¡A«h³o N ­Ó¦VÁ¿½u©Ê¿W¥ß¡C

½u©Ê¬Û¨Ì

µLªkºc¦¨½u©Ê¿W¥ß®ÉºÙ¤§

 

¦V¶q¡G¤j¾Çª«²z¾Çªº©w¸q

®y¼ÐÂà´«¡]¸Ô¨£¤U¦¸¤W½Ò¤º®e¡G´X¦ó II¡^

 

¦V¶qªÅ¶¡¡G

¸ÓªÅ¶¡¤¤¦³­¼»P¥[¨âºØ¾Þ§@¡C«Y¼Æ­¼¤W°ò©³¦V¶q¬O°ò¥»³æ¤¸¡C¦V¶q¬O¥i¥H¥[´îªº¡A¦Ó«Y¼Æ¡]¯Â¶q¡^«h­¼¦b¦V¶q¤W¡A­nº¡¨¬¤@¨Ç³W«ß¡A¨Ãºc¦¨«Ê³¬¨t²Î¡C

¡]ºû°ò¦Ê¬ì¡Ghttp://en.wikipedia.org/wiki/Vector_space¡BMathWorld¡Ghttp://mathworld.wolfram.com/VectorSpace.html¡^
¡]©w¸qùØ­è¦n¤]¦³½Í¨ì Åé(filed) ªº¡A¸Ô¨£ http://mathworld.wolfram.com/FieldAxioms.html¡^

 

¦V¶q¶¡ªº¤º¿n»P¥~¿n

¦V¶qªº¤º¿n

§Ú­Ì¬°¤°»ò·Q­nª¾¹D¦V¶qªº¤º¿n¡G(1) ·Qª¾¹D¦V¶qªºªø«× (2) ·Qª¾¹D¦V¶qªº¤À¶q

¡]´X¦ó·N¸q¬O¡G¥ô¤@¦V¶q¦b¥t¤@¦V¶q¤Wªº§ë¼v¤j¤p¡A¨âºØ§@ªkªºµ²ªG¬O¤@¼Ëªº¡C¡^¡]¬°¤°»ò¡H¡^

 

¦V¶qªº¥~¿n

§Ú­Ì¬°¤°»ò·Q­nª¾¹D¦V¶qªº¥~¿n¡G¹qºÏ¥æ¤¬§@¥Îªº³Ò­Û¯Y¤O¡B´y­zÂà°Ê¡]¦ý¤p¤ßÂà°Ê¥»¨­¤£¬O¦V¶q¡BÂà³t¤~¬O¡A¦]¦¹¨¤°Ê¶q¤´¬O¦V¶q¡^¡C

¡]´X¦ó·N¸q¬O¡G¨â¦V¶q¼µ¶}¤§­±¿n¤j¤p¡B¤è¦V¬O¼µ¶}­±¤§ªk¤è¦V¡C¡^¡]¦b¤T«×ªÅ¶¡´N¬OÅé¿n¶Ü¡H¤£¬O¡A¦V¶q¤T­«¿n¡A§Y A · (B × C) ¤~¬O¤T­Ó¦V¶q¼µ¶}¨Óªº¥­¦æ¤»­±ÅéÅé¿n¡^

¥~¿n¤§¤j¤pµ¥©ó±i¶}¤§¥­¦æ¥|Ãä§Î­±¿n¤@¨Æ¡A¬O¥i¥H³z¹L :"²¾¤@¶ô¸É¤@¶ô" ªºµ¦²¤ÃÒ©ú¡A½Ð¤j®a¦Û¦æ¸Õ¸Õ¬Ý¡C

§ó°ªºû«×ªº±¡§Î¡Gn ­Ó¦V¶q¦b n ºûªÅ¶¡±i¶¡¨ÓªºÅé¿n¡A¬O¸Ó n ­Ó¦V¶q±N¦U¦Û¤À¶q±Æ¦¨¯x°}«áªº¦æ¦C¦¡­È¡C¦Ü©ó n × n ¯x°}ªº¦æ¦C¦¡­È«ç»òºâ¡A¬O¦³¤½¦¡¤Î³W«ß©Êªº¡C

§@·~¡G¤Gºû¦V¶q¨â­Ó¨D¥~¿n¡A¸Õ»P¨ä¤À¶q§Î¦¡©Ò²Õ¦¨ªº¦æ¦C¦¡­È§@¤ñ¸û¡C

 

 

©µ¦ùª¾ÃÑ¡G¨ç¼ÆªÅ¶¡

¡]¤U¦¸¤W½Ò¤¶²Ð¡^

 

(¼Æ¾Ç)ª«¥ó

¤T«×ªÅ¶¡ùتº(¼Æ¾Ç)ª«¥ó¡GÂI¡B½u¡B­±¡BÅé

ª½½u

¦p¦ó¼g¤U¤@±øª½½uªº¤èµ{¦¡¡H

¦h°Ý¤@¥y¡G¦p¦ó¼g¤U¤@­Ó¥­­±ªº¤èµ{¦¡¡H

(§âµ¹©w³W«ß¥Îª«¼Æ¾Ç»y¨¥ªí¥Ü¥X¨Ó)

¦±½u

¦X©yªº°Ñ¼Æªí¥Üªk

¤@±ø¦±½u¬O¥i¥H¥Î°Ñ¼Æ¨Óªí¥Üªº¡A¥u­n³o­Ó°Ñ¼Æº¡¨¬¤@¨Ç°ò¥»ªº¡B¤£¤ÓÂ÷ÃЩDz§ªº­n¨D¡C

 

¦±½uªº½d¨Ò¡G

ÂI¶°¦X (x1, x2) ªº¤@¯ë§Î¦¡¥Î·¥®y¼Ðªí¥Ü

x1 = r cosθ , x2= r sinθ

 

ªü°ò¦Ì¼wÁ³½u

¨Ì¤W­±©w¸qªº (x1, x2)¡A¨ä¤¤

r = a θ , ( a ≠ 0 )

²£¥Í¤W¹Ïªºµ{¦¡¡@spiral_of_archimedes.f ¡]²³æª© spiral.f¡^

 

¨f¶ø§J°Ç´µ ½¯¸­½u

r = 2 c sin2θ / cosθ , ( c ≠ 0 )

²£¥Í¤W¹Ïªºµ{¦¡¡@cissoid_of_diocles.f

 

Conchoid (°F½u) of Nicomedes  ¡@¡@   (¤£¬O ³F½u limacon)

r = a / cosθ+ c , ( a ≠ 0, c ≠ 0 )

²£¥Í¤W¹Ïªºµ{¦¡¡@conchoid_of_nicomedes.f

http://mathworld.wolfram.com/ConchoidofNicomedes.html

http://en.wikipedia.org/wiki/Conchoid_%28mathematics%29

 

Trisectrix  (¤Tµ¥¤À¨¤½u) of Maclaurin

r = a / cos(θ/3) , ( a ≠ 0, θ = 0 ~ 3π)

²£¥Í¤W¹Ïªºµ{¦¡¡@trisectrix_f_maclaurin.f

 

½Æ²ß¡G³æÅܼƨç¼Æ y(x) ªº·L¤À

¦^ÅU©w¸q

±q ¥­§¡±×²v ¨ì ¤Á½u±×²v Δy/Δx - > dy/dx ( ≡ y' ) ≡ lim Δx-> 0 [y(x+Δx) - y(x)] / Δx

 

¦pªG±Ä¥Î«e­±§@¹Ï³æ¤¸°Ñ¼Æªí¥ÜªkªºÆ[ÂI¡Ay = y(t), x = x(t) = t

 

½Æ²ß¡G¦V¶q¹ï¯Â¶q°Ñ¼Æªº·L¤À

v = (vx, vy, vz)

dv/dt = d/dt ( vx, vy, vz) = ( dvx/ dt , dvy / dt , dvz/ dt )

 

dy = (dy/dx) dx

du = (∂u /∂x) dx + (∂u /∂y) dy + (∂u /∂z) dz = (u) . dr

¨ä¤¤ ∂u /∂x ≡ lim Δx-> 0 [u(x+Δx, y, z) - u(x, y, z)] / Δx

¬O ¦h¦ÛÅܼƨç¼Æ u = u(x, y, z) ¹ï¨ä¤¤ªº¤@­Ó¦ÛÅÜ¼Æ x ªº¡u°¾·L¤À¡]partial differentiation¡^ ¡v

 

¤U­±¡A§Ú­Ì¨Ó¬Ý¬Ý¤@­Ó¥i·L¤Àªº³sÄòÅܤƦ±½u¡C

 

¦±½u¦Û¨­ªº°Ñ¦Ò®y¼Ð

ªÅ¶¡Ås¦±»P§_¡A¬O¤£¬O«D±o­n¶]¨ì§ó°ªºû«×¤~¬Ý±o¥X¨Ó¡H¦í¦b§Cºû«×ªÅ¶¡ªº¥Íª«¦³¤°»ò½u¯Á¥i¥Î¡H¡]µª®×¡G«D¼Ú´X¦ó®É¡A¼Ú¤ó´X¦ó¤w«Ø¥ßªº¤½³]¬O¤£¯à¥Î¤F¡C¦p¤T¨¤§Î¤º¨¤©M¤j©ó 180 «×¡^

¨Æ¹ê¤W¡A§Y«K¤Gºû³£¬O«Ü«j±jªº¡A¦]¬°¨º¨Ç¥Íª«³£¤£¥i¯à¦³®ø¤Æ¹D¡]·Q¹³¤@¤U¡^¡C

¦³¦P¾Ç°Ý¡A¬O§_¹sºû»P¤@ºû´N¤£ª¾¹D©Î¨S¦³©Ò¿×ªºªÅ¶¡Ås¦±¡Hµª®×¬Oªº½T¦p¦¹¡G±oª¾ªÅ¶¡Ås¦±»Ý­n¦±²v§@¬°¸ê°T¡A¦]¦¹¦Ü¤Ö­n¦³¨â­Óºû«×¡A¤@­Ó¬O¤Á½u¤è¦V¡A¥t¤@­Ó¬O««ª½©ó¤Á½u¤è¦V¡C¥t¤@¦Ò¼{ªº¨¤«×¡A´ú«×±i¶qªº©w¸q gij = ei · ej¡A ¦]¦¹¦Ü¤Ö»Ý¨â­Ó½u©Ê¿W¥ßªº¦V¶q§@°ò©³¤~¦³³Ì°_½Xªº´ú«×±i¶q¡C³o©IÀ³§Ú­Ì«e­±Á¿¹Lªº¡A¤@ºû¥Íª«¤£»Ý­n²¦¤ó©w²z¡C

 

©·ªø§@¬°¦±½uªº¦ÛµM°Ñ¼Æ

©·ªøªºÆ[©À¡A¥i¥H±q¦hÃä½u¬qªºªø«×¨Ó«ä¦Ò¡C¤W¹Ï¨C¤@ª½½u¬q³£¥i¥Ñ²¦¤ó©w²z©ú½T±o¥X¡]¦]¬°§Ú­Ìª¾¹D¨º¨ÇÂIªº x ¤Î y ®y¼Ð¡^¡A¬G¥i¥[±oÁ`ªø¡C¦pªG¤Á¤À¶V¨Ó¶V²Ó¡A¦ÓÁ`ªøÁÍ©ó¬Y¤@©w­È·¥­­¡C

 

³o­Ó l   ¥i¥H³QÃÒ©ú±N»P¿ï¨ú°Ñ¼Æªí¥ÜªkµLÃö¡C¡]¦ý³o­Ó l ¯uªº¬O§Ú­Ì©Ò»{ª¾ªº©·ªø³oºØªF¦è¶Ü¡H«ç»ò¬Ý¥X¨Ó¡HÃöÁä¦b dx = (dx/dt) dt = x· dt¡A§Y dx = √(dx · dx) = √(x· · x· ) dt ¡^

©·ªø¥»¨­¥i¥H¨Ì¨äªø«×µo®iªºÅܤƦӮ³¨Ó·í§@¤@­Óªí¥Ü¦±½uªº°Ñ¼Æ¡A¥¦»P­ì°Ñ¼Æ¤§¶¡ªºÃö«Y¥u­n¥é·Ó¤W¦¡©w¸q¨Ó©w¦¨¥H¤Uªº§Î¦¡§Y¥i¡G

§Q¥Î³o­Ó©w¸q¡A¥iÃÒ©ú¡]¦b¦¹¤£¦C¡^¡A©·ªø¥»¨­º¡¨¬§@¬°¦±½u¤§°Ñ¼Æªí¥Üªkªº³W©w­n¨D¡A¥¦ªº½T¬O¥i¥H®³¨Ó§@¬°´y­z¦±½uªº°Ñ¼Æ¡C

¥H dx  = (dx1, dx2, dx3) ¥Nªí·L¤p½u¬q¦V¶q¡A«h®Ú¾Ú²¦¤ó©w²z¡]¤Gºûªº³s®M¥Î¨â¦¸¡^¡A¥i¥H½T»{ s ¯uªº¨ã¦³©·ªøªº·N¸q

 

½d¨Ò¡G¶êÁ³±Û½u

x = ( r cos(t), r sin(t), c t )

±o¨ì¤F¤W¦¡ s(t) ¡A´N¥i¥H¤Ï§ä t(s)¡A¨ú¥N¤F­ì¦±½u°Ñ¼Æ¦¡¤¤ªº t¡A«K¹F¨ì¤F¥H©·ªø s §@¬°°Ñ¼Æ ªº¥Øªº¡C

Q¡G¦pªG±o¨ìªº s(t) ¨S¦³¿ìªk®e©ö (©Î¬Æ¦Ü¤£¥i¯à) ¤ÏÂà¥X t(s)¡A«ç»ò¿ì¡H

A¡G³o¥Nªí t ªº¿ï¾Ü¡A§@¬°°Ñ¼Æ¡A¨Ã¤£¬O³Ì¬°²z·Q¡C¦ý¦pªG¯u¨S¤Ó¦h¿ï¾Ü¡A¤´¥i³]ªk¤À¦¨¤£¦P°Ï¬q¡A¦b¨C­Ó¦³ 1-¹ï-1 ¹ïÀ³ªº°Ï¬q¤¤¡A¶i«Ø¥ß t(s) ¨ç¼Æ (¤Ï¨ç¼Æ) Ãö«Y¡C

 

¸É¥R«ä¦Ò¡G

¦pªG§Ú­Ì­n¥Î¹q¸£¥hªí²{¥ô¦óªº¦±½u¡A¤£ºÞ®³¨ìªº¬O¤½¦¡ªº x(t) ©Î¬O¼Æ¾Úªº X(I) ¡A§Ú­Ì³£¯à¦Û¦æ«Ø¥ß¦X¾Aªº°Ñ¼Æ¨Óø¹Ï¡C

 

³oùجJµM´£¥X¤F©·ªø¥i°µ¬°°Ñ¼Æ¨Ï¥Î¤F¡A«h®y¼Ð¹ï°Ñ¼Æ¤§·L¤À´N¦³¹ï¯S§Oªº s ¤Î¤@¯ëªº t ¤F¡A¥H¤U¥Î prime ¤Î dot ¦b²Å¸¹¤W°Ï¤À¥¦­Ìªº¤£¦P¡G

 

±×²v¡B¦±²v¡B§á²v

¤Á½u¤è¦V¡]±×²v¡^

¦±½u¶i®iªº¤è¦V¬O

¤W¦¡¦³¨S¦³°£¥H h ³£¨S¦³Ãö«Yªº¡C

¨ú·¥­­ªº±¡ªp¡A¥i±o³æ¦ì¤Á¡]½u¡^¦V¶q

¦pªG´«±q¦b°Ñ¼Æ t ªºªí¶H¡]ªí¥Üªk¡^ùØ¡A«h¦³

§Q¥Î¥H¤U©Ê½è¡]¥Ñ s(t) ªº©w¸q¥i¬Ý¥X¡^

«K¥i±o¨ì

¦p¦¹¥i¥H¬Ý±o¥X¥¦ªº½T¬O³æ¦ì¦V¶q (¤p¤ß¤Á¦V¶q t »P°Ñ¼Æ t ¬O¤£¦PªºªF¦è)

 

¦±²v

¤Á½u¤è¦V¦pªG¤@ª½¤£ÅÜ¡A´N¬O¤@±øª½½u¡]¬Û¹ï©ó¨ä©Ò¦bªºªÅ¶¡¦Ó¨¥¡^¡C

¦pªG¤Á½u³æ¦ì¦V¶qÀHµÛ°Ñ¼Æ¦Ó§ïÅÜ¡A¥²©w²£¥ÍÅs¦±¡C±N³æ¦ì¤Á½u¦V¶q¹ï©·ªø¬°¤À¡A±o¨ì¥H¤Uªº¦V¶q k(s) ¡]¨S¦³¯S©w©R¦W¡A¦ý¨Ì¨ä¤è¦V©w¥Xªº³æ¦ì¦V¶q¥s§@ªk¤è¦V¡A«á­±·|´£¨ì¡^

¨ä¤j¤p¥s§@¦±²v κ(s)

¥i©w¸q  ¦±²v¥b®|

 

¤£¥Î©·ªø§@°Ñ¼Æ¡A¦Ó¥H¤@¯ëªº°Ñ¼Æªí¥Ü¦±²v®É¡A½ÆÂø«Ü¦h¡]¤£­«­n¡A¶È¨Ñ°Ñ¦Ò¡^

 

¤Á½uÅܤƤè¦Vªº³æ¦ì¦V¶q¡A¤S¥s¦±½uªºªk¦V¶q (Normal Vector) ¡G

 

§Ú­Ì¦A©w bi-normal vector ¡A¬°¬ð¥X««ª½©ó t »P p ©Ò±i¶}ªº¥­­±¡A¤U­±½Í§á²vªº®É­Ô­n¥Î

t ¡Bp ¡B b §Î¦¨¥k¤â¨t®y¼Ð¶b

 

§á²v

¦±²v´ú«×¦±½u°¾Â÷¤Á½u¤è¦Vª½¦æªºµ{«×¡A¦Ó§á²v«h´ú«×°¾Â÷±K¤Á­±¡]osculating plane¡A§Y t »P p ºc¦¨ªº­±¡^ªºµ{«×¡]¤U¹Ï¤¤ªº N ´N¬O§Ú­Ì¤½¦¡¤¤©w¸qªº normal vetor p¡^

§Ú­Ì¥i¥H¬Ý¥X

©w¬°¦p¤U

¥Ñ©ó b' »P p ¥­¦æ¡A¬G§á²v τ ¬°

 

«ä¦Ò¡GªF¨Ê­}¤h¥§»P¤W®ü­}¤h¥§³£«Ø³y¤F¤@¼Ëªº¶³¾]­¸¨®¡A­n«ç»ò¼Ë½T»{¡H

 

«ä¦Ò¡G«ó¦¡¦Õ¾÷½u¥i´î¤Ö¦¬±²®É¥´µ²¡A¦p¦ó²z¸Ñ¡H

 

­«­n©Ê½è

­Y±N¤@±ø¦±½uªº§½³¡ÅܤƥH®õ°Ç®i¶}¦¡¥[¥H¤À¬è¡A«h·|µo²{¡A¥H©·ªø¬°°Ñ¼Æ¡A¥H t¡Bp¡Bb ¬° x1¡Bx2¡Bx3 ªº®y¼Ð¶b¡A«h x1¡Bx2¡Bx3 ªºÅܤƥþ¥Ñ©·ªø¡B¦±²v»P§á²v¨M©w¡A³o­Ó¤½¦¡¥s°µ¥¿«hªí¶H¡]canonical representation¡^¡C

¨Æ¹ê¤W¡A¦±²v»P§á¦±°ß¤@¨M©w¤F¤@±ø¦±½u¡]¦b¤£­p¦ì¸mªº±¡ªp¤U¡^¡C(¥s°µ "ªÅ¶¡¦±½uªº°ò¥»©w²z"¡A¡^

 

 

¤@ºûªÅ¶¡ªº½u¡A¥Ã»·¬Oª½ªº

¤GºûªÅ¶¡¤¤ªº¤@±ø¦±½u¡A«ç»òª¾¹D¦Û¤v¤£¬Oª½ªº¡H

¤T«×ªÅ¶¡¤¤ªº¤@­Ó¦±­±¡A«ç»òª¾¹D¦Û¤v¤£¬O¥­ªº¡H

¬Y¤@¤Ñ¿ô¨Ó¡A§Aµo²{¶q¨ìªº¶ê©P²v¬O 2.9¡A«ç»ò¦^¨Æ¡H

 

 

¥­­±

¤@­Ó¨å«¬ªº¨Ò¤l¡A¤T¨¤§Î¤º¨¤©Mµ¥©ó 180 «×¡A(¸É¥R¡G¤T¨¤§Îªº¥~¨¤©Mµ¥©ó 360 «×¡F¥Y¦hÃä§Îªº¥~¨¤©M¬O 360 «×)

http://dropwa.com/math/polygon/poly_3t.htm

 

¦±­±

µôÁ_®v­n¯àÀ´¦±­±ªº´X¦ó¡A¦]¬°¥¬¬O¥­­±¦Ó¦çªA¬O¥ßÅ骺

¦±­±Ås¦±¦p¦ó´y­z¡H¡]»P¦±½u¤@¼Ë¡A³z¹L¦±­±ªk¤è¦Vªu°Ñ¼Æ©µ¦ù®ÉªºÅܤơ^

¦±­±¤W¯à¦³ª½½u¶Ü¡H¡]ªk¦V¶q¬O¦±­±ªº¤@­Ó­«­n¯S¼x¶q¡A¦±­±¤Wªº½u¦b¦±­±ªk¤è¦Vªº§ë¼v¡A§e¤@ª½½uªÌ¡A§Y¬Û·í©ó¦±­±¤Wªºª½½u¡C¡^

¦±­±¤W¤§ "ª½½u" ªº¯S©Ê¡Gªk¦V¶q§ë¼v«á±×²vªuµo®i¤è¦V¤£ÅÜ¡A³s±µ¨âÂI¶¡ªø«×³Ìµu¡]´ú¦a½u¡^¡C

 

¦p¦ó¦b¦±­±¤W«Ø¥ß®y¼Ð¡H

­n¥Î¨â­Ó°Ñ¼Æ u1, u2 ¡]¦b¦¹¥Î¤W¼Ð¨Ó¼Ð¥Ü°Ñ¼Æ¡A¤£¬O¦¸¤èªº·N«ä¡^¡AªÅ¶¡¤¤ªºÂI«h¥Ñ x(u1, u2) ¨Ó´y­z¡C

­n§@¬°¤@®M¦X²zªºªí­±°Ñ¼Æ¡A¶·­n¨D x(u1, u2) ¬O 1-1 (1¹ï1) ªº¹ïÀ³¡C¨Ã¥B¤Á½u¦V¶q t1 ¤Î t2 ¦³ t1 × t2 «í¤£¬°¹s

 

¦±­±ªºªk¦V¶q

 

¦±²v

¤@­Ó¦±­±¦³ first funcdamental form ¤Î second fundamental form ³o¨â­Ó¶q¡C

°ª´µ¦±²v

¾¤°Ò¦±²v±i¶q

 

ªÅ¶¡

ªÅ¶¡¬O´X¦óªº»R¥x¡A§í©Î¬Oºt¥XªÌ¡H

¡]°ÝÃD¡G¦t©zªºªÅ¶¡¿±µÈ¡A©Ò¦³ªºªF¦è³£©ñ¤j¡A¹ï¦a²y¤W¥Í¬¡ªº§Ú­Ì¦Ó¨¥¡A¤£¬O³£¤À¤£¥X¨Ó¶Ü¡H¨Ò¦p©Ò¿×¿±µÈªº®ð²y¹Ï¹³¡A¦b®ð²y¤Wµe¤@°¦¿ÂÃÆ¡B«h¿ÂÃƤ£¬O·|¸òµÛ¿±µÈ¶Ü¡H¡^

 

ºû«×

§Ú­Ì¦Û¤v¬Oª¾¹D¦s¦b©ó¡]¥¨Æ[¡^ªº¤T«×ªÅ¶¡¡A³o¬O¦]¬°¦¹ªÅ¶¡¤¤¨âÂIªº¶ZÂ÷¬O³z¹L s 2 = x2 + y2 + z2  ¦Ó±o¨Óªº

 

´X¦ó¾Ç©Ò»{¬°ªºªÅ°Ý¥»½è

ªÅ¶¡¥i¥HÅs¡A¦ý§½³¡¤´¬O¥­ªº¡]¥u­n¨ú°÷¤pªº½d³ò¬Ý¡^

¡]¤Ï¨Ò¡G¤£¥i·L¤Àªº¨ç¼Æ¡^

 

«e­±ªºµ²½×¡A©·ªø¬O¦±½u³Ì¦ÛµMªº°Ñ¼Æ

¤]´N¬O»¡¡A¤@ºûªÅ¶¡ùØ¡A¨âÂI¶¡ªº¶ZÂ÷(ªø«×)¬O³Ì°ò¥»ªº¡C°Ý¦p¦ó©w¶ZÂ÷¡A¥u­n±À¼s¶ZÂ÷ªº©w¸q¡A´N±À¼s¤FªÅ¶¡ªº·§©À¡C

(·Q¹³§Ú­Ì©w¸q¤@­Ó¶q, ¥s°µ "Â÷¶Z" <- ¦b¦¹¶Ã³Ð¦Wµü¤@¤U, ¨£¤U:)

 

´ú«×¡]metric¡A©w¶ZÂ÷¡A©Î norm¡^

d(P,Q) ¥²¶·¬O¹ê¼Æ¡B¦³­­¡B«D­t­È

d(P,Q) = 0 ­Y¥B°ß­Y P = Q ¡]§Y P »P Q ¬O¦P¤@­ÓÂI¡^

d(P,Q) = d(Q,P)

d(P,Q) <= d(P,R) + d(R,Q) ¡]¨ä¤¤ R ¬O²§©ó P, Q ªº¥t¤@ÂI¡A³o¤@±ø¥ó¤]¥s°µ¤T¨¤¤£µ¥¦¡¡^

 

´ú«×±i¶q

(ds)2 = Σ gij dxi dxj

gij¤£¦A¬O ³æ¦ì¯x°} I ≡ δij ¡A¨Æ±¡¶}©lÅܱo¦³½ì¡C

¨Ò¦p¡A®t¶Z¬O ( Δt, Δx, Δy, Δz ) ¨â­Ó®ÉªÅÂI¡A¨ä (¯U¸q¬Û¹ï¹y½×¤U¤§) ¥@¬É½uªº¶ZÂ÷¬O¡G

Δs2 = -c2 (Δt)2 +  (Δx)2 + (Δy)2 + (Δz)2

 

ªÅ¶¡ªº¥­©Z»PÅs¦±

¤j®a¬Ý¹L½uªºÅs¦±¡A¯à§_·Q¹³­±ªºÅs¦±¤ÎªÅ¶¡ªºÅs¦±¡H

ªÅ¶¡¤]¬O¥i¥H¦³¦±²vªº¡A¦p¦P¤@­Ó­±¡]¦±­±¡^¥i¥H¦³¦±²vªº¨º¼Ë¡C

·R¦]´µ©Z¤èµ{¦¡¶W²¤¶

 

·R¦]´µ©Z¦b¥Lªº¼s¸q¬Û¹ï½×¤¤´£¥X¡A­«¤O¥[³t«×»P¹B°Ê¥[³t«×¬Oµ¥®Äªº¡]¹B°Ê¥[³t«×·|Åý¥[³tªÌ¬Ý¨ì¥úªºÅs¦±¡A­«¤O¥[¤]·|¡^¡A­«¤O³y¦¨ª«Åé¥[³t¬O¦]¦³½è¶qªºª«½è¨ä¶g³ò®ÉªÅªº¦±²v¦Ó³y¦¨¡C

 

¤ô¬P¶i°Ê»P¤Ó¶§­I«áªº¬P¥úÅs§é¡]¥þ¤é»k¤~¬Ý±o¨ì¡^ªº¹w´ú¡A¬O¦¹¤@²z½×ªº¨â¤j³Ó§Q¡C

 

¤èµ{¦¡ªº¼Ë¤l¦p¤U¡G

G μν - Λ g μν = k T μν

¤W¦¡ªº·N«ä¬O

®ÉªÅ¦±²v - ¦t©z¶µ = ª«½è±K«×

¨ä¤¤ Λ¬O¦t©z±`¼Æ¡Bk ¬O­«¤O±`¼Æ¡CùØÀY¬°¤FÀç³y¥X«í©w¦t©z¡]§_«h­ì¤èµ{¦¡ªº¸Ñ«D¿±µÈ§Y¦¬ÁY¡^¡A¦Ó³]ªºÊï®ø¶µ¡C

1929 ¦~¦b«¢§B±o¨ì¦t©z¿±µÈªºÃҾڮɡA·R¦]´µ©Z¦ÛºÙ³o¬O¥L¤@¥Í³Ì¤j³Ì¿ù»~¡C¡]¦³¼Æ¾Ú¤ä«ù¦t©z¿±µÈ¬O¥[³t¤§«á¡A¦³¤H¦]¦¹»¡¡AÃø¨ì·R¦]´µ©Zªº¦t©z¶µ²×¨sÁÙ¬O¥[¹ï¤F¶Ü¡H¡^

 

¦p¦ó´y­zºô®æ¡]ºô¸ô¡^¤Wªº¦ì¸m¡H¬O§_¦s¦b¹³©·ªø¨º¼Ë¦ÛµMªºªí¥Üªk¡H