°ò¦ª«²z¼Æ¾Ç ¦U¶g¶i«×

 

112-2 ³æ¾Ç´Á (¨â¾Ç¤À)

¶g¦¸ ©P¤T (²Ä1¸`) ©P¤T (²Ä2¸`)

³¹§O

²Ä 1 ¶g ½Òµ{²¤¶  

 

²Ä 2 ¶g

½Æ²ß¡G¨ç¼Æ¡B·L¤À¡B¿n¤À

¦V¶qªº©w¸q»P°ò¥»¥N¼Æ¹Bºâ

¦V¶q

²Ä 3 ¶g

®y¼ÐÅÜ´«¡B¦V¶q·L¤À¡B¦±½u¡B­y¹D(¿ï)

±è«×¡B´²«×¡B±Û«×¡B±`¥Î¤½¦¡¡B¥¿¥æ¡]²y¡B¬W¡^®y¼Ð¨t

¦V¶q

²Ä 4 ¶g

¦V¶q¿n¤À¡G°ª´µ©w²z»P³sÄò¤èµ{¦¡

©µÄò¤W¤@¸`

¦V¶q

²Ä 5 ¶g

¥qÅM§J´µ©w²z¡B®æªL©w²z»P¨ä¥L

©µÄò¤W¤@¸`

¦V¶q

²Ä 6 ¶g

²Ä¤@¦¸¤p¦Ò

²Ä¤@¦¸¤p¦Ò

²Ä 7 ¶g ±i¶qªº¨Ó·½¡B©w¸q»P½d¨Ò¡B¨óÅÜ¡B¤Ï¨óÅÜ ´ú«×±i¶q¡B¾¤°ÒªÅ¶¡¡B´ú¦a½u

±i¶q

²Ä 8 ¶g ¨óÅÜ·L¤À ½w½Ä (¦Ò«e½Æ²ß)

±i)¶q

´Á¤¤¦Ò  

²Ä 10 ¶g

´Á¤¤¦ÒÀË°Q

´Á¤¤¦Ò¤À¼Æ¥Ó¶D§ó¥¿
²Ä 11 ¶g ¤@¶¥±`·L¤è¡G¤ÀÂ÷ÅܼơB¥¿¦X¤èµ{¦¡¡B¿n¤À¦]¤l(½d¨Ò) ©µÄò¤W¤@¸`
±`·L¤À¤èµ{
²Ä 13 ¶g ±`«Y¼Æ¤G¶¥±`·L¤è¡G³q¸Ñ¡B ¦s¦b©Ê¡]®Ô¤ó®Ú¡^¡B¸É¨ç¼Æ ©µÄò¤W¤@¸`

±`·L¤À¤èµ{

²Ä 12 ¶g ²Ä¤G¦¸¤p¦Ò ²Ä¤G¦¸¤p¦Ò

 

²Ä 14 ¶g ¯S®í¸Ñ¡BD ºâ¤l¡B¶ø¨Ì°Ç½u©Ê¤èµ{(²¤) ¯Å¼Æ¸Ñ¡B³Åù¨©¥§¨È´µªk

±`·L¤À¤èµ{

²Ä 15 ¶g ¦P®É¤èµ{¦¡¡BΓ »P β ¨ç¼Æ¡]¿ï¡^ ªì©l­È°ÝÃD»PÃä¬É­È°ÝÃD¡B¼Æ­È¸Ñ²L½×

 

²Ä 16 ¶g ´Á¥½¦Ò½Æ²ß ´Á¥½¦Ò½Æ²ß

 

´Á¥½¦Ò    

 

²Ä 18 ¶g ¼u©Ê±Ð¾Ç

 

 

¨î²Ä¤G¾Ç´Á (°Ñ¦Ò¥Î¡A¥»¯Z¥u¦³³æ¾Ç´Á)

¶g¦¸ ©P¤­ (²Ä1¸`) ©P¤­ (²Ä2¸`)  
²Ä 1 ¶g ½Òµ{²¤¶    
²Ä 2 ¶g ¯x°}ªº©w¸q¡B¯S©Ê¡B³W«h ¯x°}¥N¼Æ¡B¤Ï¯x°}¨Dªk
¯x°}
²Ä 3 ¶g (Âà°Ê)¥¿¥æ¡B¤Ì¦Ì¯S¯x°} (®y¼Ð)¥¿¥æ¡B¤\¥¿¡B¬Û¦üÂà´«
¯x°}
²Ä 4 ¶g ¥»¼x­È°ÝÃD»P¯x°}¹ï¨¤¤Æ ºD¶q¯x»P normal mode °ÝÃD
¯x°}
²Ä 5 ¶g ¸É¥R¡G¤Ï¯x°}ªº¨Dªk¡]°ª´µªk¡^  
¯x°}
²Ä 6 ¶g ¤p¦Ò ¤p¦Ò  
²Ä 7 ¶g ¨ç¼Æ¥¿¥æ©Ê»P´I§Q¸­¯Å¼Æ Gibbs ²{¶H¡B ®¶°Ê©¶¡BRLC °j¸ô ´I§Q¸­¯Å¼Æ
²Ä 8 ¶g ´I§Q¸­¿n¤À»P´I§Q¸­Âà´« δ¨ç¼Æ¡B±²¿n©w²z ´I§Q¸­¯Å¼Æ
²Ä 9 ¶g ®æªL¨ç¼Æ («O¯d) «O¯d  / ½w½Ä ´I§Q¸­¯Å¼Æ
´Á¤¤¦Ò  
²Ä 11 ¶g ´Á¤¤¦ÒÀË°Q ´Á¤¤¦Ò¤À¼Æ¥Ó¶D§ó¥¿  
²Ä 12 ¶g ½u©Ê¦V¶qªÅ¶¡Â²¤¶»P°ò¥»Æ[©À½Æ²ß °ò©³(¨ç¼Æ)¡Bºû«×¡B½u©Ê²Õ¦X¡B¦V¶q(¨ç¼Æ)ªÅ¶¡
½u©ÊªÅ¶¡
²Ä 13 ¶g ¤º¿nªÅ¶¡¡B¥¿¥æ¤Æ¹Lµ{¡B(ºq¦èµÎ--¥Ë¯Y)¤T¨¤¤£µ¥¦¡ ¦V¶q»P½u©Êºâ¤lªº°ò©³»Pªí¶H
½u©ÊªÅ¶¡
²Ä 14 ¶g ºâ¤lªº¥N¼Æ»P¥»¼x­È°ÝÃD ¤@¨Ç¯S®íªººâ¤l¡]°f¡B¦ñ¡B¤Ì¦Ì¯S¡B¤\¥¿¡B§ë¼v¡^
½u©ÊªÅ¶¡
²Ä 15 ¶g °ò©³ÅÜ´«¡B¹ï©öºâ¤l¡B¨ç¼ÆªÅ¶¡  
½u©ÊªÅ¶¡
²Ä 16 ¶g ¤£©T©wªº­y¸ñ¡B Euler-Lagrange ¤èµ{¦¡ ¬ù¨î±ø¥ó¤UªºÅܤÀ¾Ç°ÝÃD ÅܤÀ¾Ç
²Ä 17 ¶g Hamilton ­ì²z»P Lagrange ¹B°Ê¤èµ{¦¡¡BRyligh-Ritzªk Hamilton's ­ì²z»P ¥¿«h (canonical) ¹B°Ê¤èµ{¦¡ ÅܤÀ¾Ç
²Ä 18 ¶g ­×¥¿ªº Hamilton ­ì²z¡BHamilton-Jacibi ¹B°Ê¤èµ{¦¡¡B¦hÅܶqÅܤÀ¾Ç «O¯d  / ½w½Ä ¤Q¤j­«ÂI½Æ²ß ÅܤÀ¾Ç
´Á¥½¦Ò  

 

 

­ì³W¹º

¶g¦¸ ¤G (3) ¤G (4) ³¹§O
²Ä 1 ¶g ½Òµ{²¤¶    
²Ä 2 ¶g

½Æ²ß¡G¨ç¼Æ¡B·L¤À¡B¿n¤À

¦V¶qªº©w¸q»P°ò¥»¥N¼Æ¹Bºâ
¦V¶q
²Ä 3 ¶g

®y¼ÐÅÜ´«¡B¦V¶q·L¤À¡B¦±½u¡B­y¹D(¿ï)

±è«×¡B´²«×¡B±Û«×¡B±`¥Î¤½¦¡¡B¥¿¥æ¡]²y¡B¬W¡^®y¼Ð¨t

¦V¶q
²Ä 4 ¶g

¦V¶q¿n¤À¡G°ª´µ©w²z»P³sÄò¤èµ{¦¡

©µÄò¤W¤@¸`

¦V¶q
²Ä 5 ¶g

¥qÅM§J´µ©w²z¡B®æªL©w²z»P¨ä¥L

©µÄò¤W¤@¸`

¦V¶q
²Ä 6 ¶g

±i¶qªº¨Ó·½¡B©w¸q»P½d¨Ò¡B¨óÅÜ¡B¤Ï¨óÅÜ

´ú«×±i¶q¡B¾¤°ÒªÅ¶¡¡B´ú¦a½u

±i¶q
²Ä 7 ¶g ¤p¦Ò ¤p¦Ò
²Ä 8 ¶g ¨óÅÜ·L¤À ½w½Ä
±i¶q
²Ä 9 ¶g ¦Ò«e½Æ²ß

¦Ò«e½Æ²ß

´Á¤¤¦Ò

 

²Ä 11 ¶g ´Á¤¤¦ÒÀË°Q ´Á¤¤¦Ò¤À¼Æ¥Ó¶D§ó¥¿
²Ä 13 ¶g ¤@¶¥±`·L¤è¡G¤ÀÂ÷ÅܼơB¥¿¦X¤èµ{¦¡¡B¿n¤À¦]¤l(½d¨Ò) ±`«Y¼Æ¤G¶¥±`·L¤è¡G³q¸Ñ¡B ¦s¦b©Ê¡]®Ô¤ó®Ú¡^¡B¸É¨ç¼Æ
±`·L¤À¤èµ{
²Ä 12 ¶g ¯S®í¸Ñ¡BD ºâ¤l¡B¶ø¨Ì°Ç½u©Ê¤èµ{(²¤) ¯Å¼Æ¸Ñ¡B³Åù¨©¥§¨È´µªk
±`·L¤À¤èµ{
²Ä 14 ¶g ¦P®É¤èµ{¦¡¡BΓ »P β ¨ç¼Æ¡]¿ï¡^ ªì©l­È°ÝÃD»PÃä¬É­È°ÝÃD¡B¼Æ­È¸Ñ²L½×
±`·L¤À¤èµ{
²Ä 15 ¶g ¯x°}ªº©w¸q¡B¯S©Ê¡B³W«h ¯x°}¥N¼Æ¡B¤Ï¯x°}¨Dªk
¯x°}
²Ä 16 ¶g (Âà°Ê)¥¿¥æ¡B¤Ì¦Ì¯S¯x°} (®y¼Ð)¥¿¥æ¡B¤\¥¿¡B¬Û¦üÂà´«
¯x°}
²Ä 17 ¶g ¥»¼x­È°ÝÃD»P¯x°}¹ï¨¤¤Æ ºD¶q¯x»P normal mode °ÝÃD
¯x°}
´Á¥½¦Ò  

 

¶g¦¸ ¤G (3) ¤G (4)  
²Ä 1 ¶g ½Òµ{²¤¶    
²Ä 2 ¶g ¨ç¼Æ¥¿¥æ©Ê»P´I§Q¸­¯Å¼Æ Gibbs ²{¶H¡B ®¶°Ê©¶¡BRLC °j¸ô ´I§Q¸­¯Å¼Æ
²Ä 3 ¶g ´I§Q¸­¿n¤À»P´I§Q¸­Âà´« δ¨ç¼Æ¡B±²¿n©w²z ´I§Q¸­¯Å¼Æ
²Ä 4 ¶g ®æªL¨ç¼Æ («O¯d) «O¯d  / ½w½Ä ´I§Q¸­¯Å¼Æ
²Ä 5 ¶g      
²Ä 6 ¶g ½u©Ê¦V¶qªÅ¶¡Â²¤¶»P°ò¥»Æ[©À½Æ²ß °ò©³(¨ç¼Æ)¡Bºû«×¡B½u©Ê²Õ¦X¡B¦V¶q(¨ç¼Æ)ªÅ¶¡
½u©ÊªÅ¶¡
²Ä 7 ¶g ¤º¿nªÅ¶¡¡B¥¿¥æ¤Æ¹Lµ{¡B(ºq¦èµÎ--¥Ë¯Y)¤T¨¤¤£µ¥¦¡ ¦V¶q»P½u©Êºâ¤lªº°ò©³»Pªí¶H
½u©ÊªÅ¶¡
²Ä 8 ¶g ºâ¤lªº¥N¼Æ»P¥»¼x­È°ÝÃD ¤@¨Ç¯S®íªººâ¤l¡]°f¡B¦ñ¡B¤Ì¦Ì¯S¡B¤\¥¿¡B§ë¼v¡^
½u©ÊªÅ¶¡
²Ä 9 ¶g °ò©³ÅÜ´«¡B¹ï©öºâ¤l¡B¨ç¼ÆªÅ¶¡  
½u©ÊªÅ¶¡
´Á¤¤¦Ò  
²Ä 11 ¶g ´Á¤¤¦ÒÀË°Q ´Á¤¤¦Ò¤À¼Æ¥Ó¶D§ó¥¿  
²Ä 12 ¶g ¤£©T©wªº­y¸ñ¡B Euler-Lagrange ¤èµ{¦¡ ¬ù¨î±ø¥ó¤UªºÅܤÀ¾Ç°ÝÃD ÅܤÀ¾Ç
²Ä 13 ¶g Hamilton ­ì²z»P Lagrange ¹B°Ê¤èµ{¦¡¡BRyligh-Ritzªk Hamilton's ­ì²z»P ¥¿«h (canonical) ¹B°Ê¤èµ{¦¡ ÅܤÀ¾Ç
²Ä 14 ¶g ­×¥¿ªº Hamilton ­ì²z¡BHamilton-Jacibi ¹B°Ê¤èµ{¦¡¡B¦hÅܶqÅܤÀ¾Ç «O¯d  / ½w½Ä ÅܤÀ¾Ç
²Ä 15 ¶g ±Æ§Ç¡B´¡­È¡B§@¹Ï¡B ·L¤À¡B¿n¤À
¼Æ­È¤èªk
²Ä 16 ¶g ¸Ñ·L¤À¤èµ{ I ¸Ñ·L¤À¤èµ{ II
¼Æ­È¤èªk
²Ä 17 ¶g ¾÷²v¡B¨ú¼Ë¡B±Æ¦C²Õ§t¡B¾÷²v¤À§G¨ç¼Æ¡B¤¤¥¡·¥­­©w²z ÀH¾÷ÅܼơB¥­§¡­È¡BÅܲ§¼Æ¡B¼Ð·Ç®t¡B±`ºA¤À§G¡B¦±½uÀÀ¦X
¾÷²v²Î­p
²Ä 18 ¶g ¤G¶µ¦¡¡BªyªQ¡B°ª´µ¡B°¨§J´µ«Âº¸--ªi¯Y°Ò¤À§G  
¾÷²v²Î­p
´Á¥½¦Ò  

 

¾ǴÁ

¶g¦¸ ¤@ (2) ¤G (3) ¤G (4) ³¹§O
²Ä 1 ¶g ½Òµ{²¤¶ ¦V¶qªº©w¸q»P°ò¥»¥N¼Æ¹Bºâ ®y¼ÐÅÜ´«¡B¦V¶q·L¤À¡B¦±½u¡B­y¹D(¿ï) ¦V¶q
²Ä 2 ¶g ±è«×¡B´²«×¡B±Û«×¡B±`¥Î¤½¦¡¡B¥¿¥æ¡]²y¡B¬W¡^®y¼Ð¨t ¦V¶q¿n¤À¡G°ª´µ©w²z»P³sÄò¤èµ{¦¡

¥qÅM§J´µ©w²z¡B®æªL©w²z»P¨ä¥L¡F
¡]¹w²ß¤p¦Ò¡G¦V¶q¡^

¦V¶q
²Ä 3 ¶g ±i¶qªº¨Ó·½¡B©w¸q»P½d¨Ò¡B¨óÅÜ¡B¤Ï¨óÅÜ ´ú«×±i¶q¡B¾¤°ÒªÅ¶¡¡B´ú¦a½u ¨óÅÜ·L¤À ±i¶q
²Ä 4 ¶g ¤@¶¥±`·L¤è¡G¤ÀÂ÷ÅܼơB¥¿¦X¤èµ{¦¡¡B¿n¤À¦]¤l(½d¨Ò) ±`«Y¼Æ¤G¶¥±`·L¤è¡G³q¸Ñ¡B ¦s¦b©Ê¡]®Ô¤ó®Ú¡^¡B¸É¨ç¼Æ ¯S®í¸Ñ¡BD ºâ¤l¡B¶ø¨Ì°Ç½u©Ê¤èµ{(²¤) ±`·L¤è
²Ä 5 ¶g ¯Å¼Æ¸Ñ¡B³Åù¨©¥§¨È´µªk ¦P®É¤èµ{¦¡¡BΓ »P β ¨ç¼Æ

ªì©l­È°ÝÃD»PÃä¬É­È°ÝÃD¡B¼Æ­È¸Ñ²L½×

±`·L¤è
²Ä 6 ¶g ¯x°}ªº©w¸q¡B¯S©Ê¡B³W«h
(²Ä¤G¦¸¹w²ß¤p¦Ò¡G¯x°})
¯x°}¥N¼Æ¡B¤Ï¯x°}¨Dªk (Âà°Ê)¥¿¥æ¡B¤Ì¦Ì¯S¯x°} ¯x°}
²Ä 7 ¶g (®y¼Ð)¥¿¥æ¡B¤\¥¿¡B¬Û¦üÂà´« ¥»¼x­È°ÝÃD»P¯x°}¹ï¨¤¤Æ ºD¶q¯x»P normal mode °ÝÃD ¯x°}
²Ä 8 ¶g «O¯d  / ½w½Ä ¨ç¼Æ¥¿¥æ©Ê»P´I§Q¸­¯Å¼Æ Gibbs ²{¶H¡B ®¶°Ê©¶¡BRLC °j¸ô ´I§Q¸­
²Ä 9 ¶g ´I§Q¸­¿n¤À»P´I§Q¸­Âà´« δ¨ç¼Æ¡B±²¿n©w²z¡B ®æªL¨ç¼Æ («O¯d) ´I§Q¸­
´Á¤¤¦Ò  
²Ä 11 ¶g ½u©Ê¦V¶qªÅ¶¡Â²¤¶»P°ò¥»Æ[©À½Æ²ß ´Á¤¤¦ÒÀË°Q ´Á¤¤¦Ò¤À¼Æ¥Ó¶D§ó¥¿ ½uªÅ¶¡
²Ä 12 ¶g °ò©³(¨ç¼Æ)¡Bºû«×¡B½u©Ê²Õ¦X¡B¦V¶q(¨ç¼Æ)ªÅ¶¡ ¤º¿nªÅ¶¡¡B¥¿¥æ¤Æ¹Lµ{¡B(ºq¦èµÎ--¥Ë¯Y)¤T¨¤¤£µ¥¦¡ ¦V¶q»P½u©Êºâ¤lªº°ò©³»Pªí¶H ½uªÅ¶¡
²Ä 13 ¶g ºâ¤lªº¥N¼Æ»P¥»¼x­È°ÝÃD ¤@¨Ç¯S®íªººâ¤l¡]°f¡B¦ñ¡B¤Ì¦Ì¯S¡B¤\¥¿¡B§ë¼v¡^ °ò©³ÅÜ´«¡B¹ï©öºâ¤l¡B¨ç¼ÆªÅ¶¡ ½uªÅ¶¡
²Ä 14 ¶g ¹w²ß¤p¦Ò¡GÅܤÀ¾Ç ¤£©T©wªº­y¸ñ¡B
Euler-Lagrange ¤èµ{¦¡
¬ù¨î±ø¥ó¤UªºÅܤÀ¾Ç°ÝÃD ÅܤÀ¾Ç
²Ä 15 ¶g Hamilton ­ì²z»P Lagrange ¹B°Ê¤èµ{¦¡¡BRyligh-Ritzªk Hamilton's ­ì²z»P ¥¿«h (canonical) ¹B°Ê¤èµ{¦¡ ­×¥¿ªº Hamilton ­ì²z¡BHamilton-Jacibi ¹B°Ê¤èµ{¦¡¡B¦hÅܶqÅܤÀ¾Ç ÅܤÀ¾Ç
²Ä 16 ¶g ±Æ§Ç¡B´¡­È¡B§@¹Ï¡B ·L¤À¡B¿n¤À ¸Ñ·L¤À¤èµ{ ¼Æ­Èªk
²Ä 17 ¶g ¾÷²v¡B¨ú¼Ë¡B±Æ¦C²Õ§t¡B¾÷²v¤À§G¨ç¼Æ¡B¤¤¥¡·¥­­©w²z ÀH¾÷ÅܼơB¥­§¡­È¡BÅܲ§¼Æ¡B¼Ð·Ç®t¡B±`ºA¤À§G¡B¦±½uÀÀ¦X ¤G¶µ¦¡¡BªyªQ¡B°ª´µ¡B°¨§J´µ«Âº¸--ªi¯Y°Ò¤À§G ¾÷²v½×
´Á¥½¦Ò  

 

 

¦V¶q»P±i¶q¤ÀªR¡]¤T¶g¡^

«e¨¥¡G¤°»ò¬O¦V¶q¡H¬°¦ó¥Î¦V¶q¡H (H 1)

¦V¶q»P¯Â¶q

¤è¦V¨¤»P¤è¦V¾l©¶

¦V¶q¥N¼Æ

¬Ûµ¥

¬Û¥[

­¼«Y¼Æ

¤º¿n

¥~¿n

¯Â¶q¤T­«¿n

¦V¶q¤T­«¿n

 

®y¼ÐÅÜ´« (H 2)

½u©Ê¦V¶qªÅ¶¡ Vn

¦V¶q·L¤À

ªÅ¶¡¦±½u

¥­­±¹B°Ê

­y¹D°ÝÃD(¿ï)

 

¦V¶q·L¤À (H 3)

¯Â¶q³õ·L¤À»P±è«×

«O¦u¦V¶q³õ

¦V¶q·L¤Àºâ¤l

¦V¶q³õªº¦V¶q·L¤À

´²«×

2

±Û«×

±`¥Î¤½¦¡

¥¿¥æ¦±½u©Ê®y¼Ð¨t

±`¥Î¥¿¥æ®y¼Ð¨t

¬W®y¼Ð¨t

²y®y¼Ð¨t

 

¦V¶q¿n¤À»P¿n¤À©w²z

°ª´µ©w²z»P³sÄò¤èµ{¦¡ (H 4)

¥qÅM§J´µ©w²z¡B®æªL©w²z»P¨ä¥L (H 5)

Helmholtz ©w²z

¤@¨Ç¦³¥Îªº¿n¤ÀÃö«Y¦¡

 

±i¶qªº©w¸q¡B¹ê¨Ò»P±i¶q¤ÀªR (H 6)

¨óÅÜ¡B¤Ï¨óÅܦV¶q

¤G¯Å±i¶q

±i¶q¶¡ªº°ò¥»¹Bºâ

°Ó«ß

 

½u¬q¤¸¯À»P´ú«×±i¶q (H 7)

ªþÄݱi¶q

¾¤°ÒªÅ¶¡ùتº´ú¦a½u

 

¨óÅÜ·L¤À(H 8)

¦V¶q¡B±i¶qÁ`µ²¡Gª«²z©w«ßªº¤£ÅÜ©Ê

 

 

±`·L¤À¤èµ{¦¡¡]¨â¶g¡^

¤@¶¥°ÝÃD (Hour 1)

¤ÀÂ÷ÅÜ¼Æ (¤Î½d¨Ò)

¥¿«h¦¡ (¤Î½d¨Ò)

¿n¤À¦]¤l (¤Î½d¨Ò)

§B§V¤O¤èµ{ (²¤)

 

¤G¶¥°ÝÃD¡]±`¼Æ«Y¼Æ¡^(Hour 2)

»ô¦¸¡B«D»ô¦¸

½u©Ê¤èµ{¦¡²Õªº³q©Ê¡G®Ô¤ó®Ú¦æ¦C¦¡

§ä¸É¨ç¼Æ

 

»P¯S¸Ñªº³W«h(Hour 3)

ºâ¤l D

 

¶ø¨Ì°Ç½u©Ê¤èµ{ (²¤)

 

¯Å¼Æ¸Ñ (Hour 4)

³Åù¨©¥§¨È´µªk

 

¦P®É¤èµ{¦¡¡BΓ »P β ¨ç¼Æ (Hour 5)

 

ªì©l­È°ÝÃD»PÃä¬É­È°ÝÃD (Hour 6) (¿ï)

¼Æ­È¸Ñ²L½×

 

¯x°}¥N¼Æ¡]¤T¶g¡^

«e¨¥¡G±q½u©Ê¤èµ{²Õ»PÂà°Ê½Í°_ (Hour 1)

¯x°}¶¡ªº°ò¥»¹Bºâ

¬Ûµ¥

¬Û¥[

­¼¤W¤@­Ó«Y¼Æ

¬Û­¼

½d¨Ò¡GÂà°Ê

µ²¦X«ß»P¤À°t«ß¦¨¥ß¡AÃÒ©ú

½u©ÊÂà´«»P¯x°}¹Bºâªº²W·½

 

§ó¦h¯x°}¾Þ§@

¦æ¦C¦¡ (Hour 2)

3x3¡Bnxn ¨Dªk¡B¤@¯ë©Ê©w¸q (Appendix II)

¹ï©ö¦¡

¾­¦¸

¯x°}ªº¨ç¼Æ

¯x°}ªºÂà¸m

©w¸q

(AB)T = BTAT ¡BÃÒ©ú

¹ïºÙ»P skew-¹ïºÙ¯x°}

¨â¹ïºÙ¯x°}¬Û­¼¥¼¥²¹ïºÙ

¦V¶q¿nªº¯x°}ªíªk

 

¤Ï¯x°} (Hour 3)

¨D¤Ï¯x°}ªº¤@ºØ¤èªk

Gramer's rule

¸É¥R¡G°ª´µ®ø¥hªk½Æ²ß

½u©Ê¤èµ{¦¡²Õ¨D¸Ñ»P¤Ï¯x°}

¨ú¦@³m½Æ¼Æ

Hemitian ¦@³m

Hemitian ¤Î anti-Hemitian ¯x°}

 

(¹ê¼Æ)¥¿¥æ¯x°} (Hour 4)

¤\¥¿¯x°}

Âà°Ê¯x°}

¯x°}¤§ trace »P¨ä·N¸q

¥¿¥æÂà´«»P¤\¥¿Âà´« ¤Î¨ä¦u«í¶q

¬Û¦üÂà´« ¤Î¨ä¦u«í¶q

 

¯x°}¥»¼x­È°ÝÃD»P¸Ñªk (Hour 5)

Hemitian ¯x°}ªº¥»¼x­È»P¥»¼x¦V   ¶q

¯x°}¹ï¨¤¤Æ

¹ï©ö¯x°}ªº¥»¼x­È

Cayley-Hamilton ©w²z

 

Âà°ÊºD¶q¡]ºD¶q¯x¡^(Hour 6)

®¶°Ê ªº Normal Modes

¯x°}ªº Direct Product

 

´I§Q¸­¯Å¼Æ»P¿n¤À¡]¤@¶g¥b or ¨â¶g¡^(À³¼Æ·|±Ð)

«e¨¥¡G¤T¨¤¨ç¼Æªº¥¿¥æ©Ê (Hour 1)

¶g´Á¨ç¼Æ

´I§Q¸­¯Å¼Æ¡F¶ø¨Ì°Ç--´I§Q¸­¤½¦¡

Gibbs ²{¶H

´I§Q¸­¯Å¼Æªº¦¬ÀÄ©Ê¥H¤Î Dirichlet ±ø¥ó

¥b°Ï¶¡´I§Q¸­¯Å¼Æ

ÅÜ´«¿n¤À°Ï¶¡

Parseval's «íµ¥¦¡

´I§Q¸­¯Å¼Æªº¨ä¥L«¬¦¡

 

´I§Q¸­¯Å¼Æªº¿n¤À»P·L¤À  (Hour 2)

®¶°Ê©¶

¾îªi®¶°Êªº¹B°Ê¤èµ{¦¡

ªi°Ê¤èµ{¦¡ªº¸Ñ

RLC °j¸ô

¥¿¥æ¨ç¼Æ

¦h­«´I§Q¸­¯Å¼Æ

 

´I§Q¸­¿n¤À»P´I§Q¸­Âà´« (Hour 3)

´I§Q¸­¥¿©¶»P¾l©¶Âà´«

®ü´Ë³ù´ú¤£·Ç­ì²z

ªi¥]»P¸s³t«×

Âǥѭn¨D modulated ªi¤§³¡¤Àªº¬Û¦ì©T©w¡Ax' = (Δω/Δk ) t¡A¬G¦³ vg = dx/dt = Δω/Δk → d ω/ d k

¾É¼ö°ÝÃD

¦hÅܶq¨ç¼Æªº´I§Q¸­¿n¤À

 

´I§Q¸­¿n¤À»Pδ¨ç¼Æ (Hour 4)

´I§Q¸­¿n¤Àªº Paerseval's «íµ¥¦¡ (identity) ¤Î¨ä¥Î³B

±²¿n©w²z

¾É¨ç¼Æªº´I§Q¸­Âà´«

δ¨ç¼Æ»P®æªL¨ç¼Æ¤èªk

 

 

½u©Ê¦V¶qªÅ¶¡¡]¤T¶g¡^

n ºû ¼Ú¤óªÅ¶¡ En

¼s·N½u©Ê¦V¶qªÅ¶¡

½u©Ê²Õ¦X

½u©Ê¿W¥ß¡B°ò©³¡Bºû«×

¤º¿nªÅ¶¡

Gram-Schmidt ¥¿¥æ¹Lµ{

Chaucy-Schwarz ¤£µ¥¦¡ (¨âÂIªº¶ZÂ÷)

dual ¦V¶q»Pdual ªÅ¶¡

½u©Êºâ¤l

ºâ¤lªº¯x°}ªí¶H

½u©Êºâ¤lªº¥N¼Æ

ºâ¤lªº¥»¼x­È»P¥»¼x¦V¶q

¤@¨Ç¯S®íºâ¤l

inverse °f (¤Ï) ºâ¤l

adjoint ¦ñ (¦ñÀH) ºâ¤l

Hermitian ºâ¤l

Unitary ºâ¤l

§ë¼vºâ¤l

 °ò©³ÅÜ´«

¹ï©ö¤§ºâ¤l

¨ç¼ÆªÅ¶¡

 

ÅܤÀ¾Ç¡]¨â¶g¡^

¤£©T©wªº­y¸ñ

Euler-Lagrange ¤èµ{¦¡ *

¬ù¨î±ø¥ó¤UªºÅܤÀ¾Ç°ÝÃD

Hamilton's ­ì²z»P Lagrange ¹B°Ê¤èµ{¦¡

Ryligh-Ritz ¤èªk

Hamilton's ­ì²z»P ¥¿«h (canonical) ¹B°Ê¤èµ{¦¡

­×¥¿ªº Hamilton's ­ì²z»P Hamilton-Jacibi ¹B°Ê¤èµ{¦¡

¦h­Ó¿W¥ßÅܶqªºÅܤÀ¾Ç

 

¼Æ­È¤èªk¡]¤@¶g¡^

µ{¦¡

§@¹Ï

´¡­È

¨D®Ú

¿n¤À

¸Ñ·L¤À¤èµ{

(¶Ã¼Æ)

¤Ï¯x°}¡B¦æ¦C¦¡­È

¥»¼x­È»P¥»¼x¦V¶q

 

¾÷²v½×²¤¶¡]¤@¶g¡^

¾÷²v»P¨ú¼Ë

±Æ¦C²Õ¦X

ÀH¾÷ÅܼÆ

¥­§¡­È¡BÅܲ§¼Æ¡B¼Ð·Ç®t

±`ºA¤À§G

¦±½uÀÀ¦X

¤G¶µ¤À§G

ªyªQ¤À§G

¤¤¥¡·¥­­©w²z

Mxwell-Boltzman ¤À§G

 

 

½Òµ{²¤¶

¥»½Òµ{¤¶²Ðª«²z¨t¤j¤G¡]¤Î³¡¤À¤j¤T¡^¦U±M·~¬ì¥Ø©Ò»Ý­nªº¼Æ¾Ç¡C

This course offer students introductory mathematics needed for second (and partly third) year Physics majors curses.

 

 

½×¼Æ¾Ç¸Ñ¨M°ÝÃD¡]«D¬ã¨s¼Æ¾Ç¡^ªº¥\¤O

©â¶H«ä¦Ò¡B²§¤¤¨D¦P

¹B¥Î¼Æ¦¡¡B«Ø¥ß¼Ò«¬

ÂkÃþ°ÝÃD¡B´x´¤±ø¥ó¡]¼Æ¾Ç°ÝÃD¤§½T¥ß¡^

ª¾¾å¸Ñªk¡B¹w´Áµ²ªG¡]ª¾¹D¦p¦ó¤U¤â¨D¸Ñ¡^

§Þ¥©¸ÑÃD¡BÀò±oµª®×